精英家教网 > 高中数学 > 题目详情

【题目】如图,四边形ABCD是平行四边形,平面AED平面ABCD,EFAB,AB=2,BC=EF=1,AE=,DE=3,BAD=60,G为BC的中点.

(1)求证:FG平面BED;

(2)求证:平面BED平面AED;

(3)求直线EF与平面BED所成角的正弦值.

【答案】

【解析】1)如图,取中点,连接

中,因为中点,所以

又因为,所以,即四边形是平行四边形,

所以,(2分)

平面平面,所以平面.(3分)

2)在中,°,由余弦定理可得

进而得°,即,(5分)

又因为平面平面平面,平面平面

所以平面.(6分)

又因为平面,所以平面平面.(7分)

3)因为,所以直线与平面所成的角即为直线与平面所成的角.

过点于点,连接

又平面平面,由(2)知平面

所以直线与平面所成的角即为.(9分)

中,,由余弦定理得

所以,因此

中,

所以直线EF与平面所成角的正弦值为.(12分)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示:湖面上甲、乙、丙三艘船沿着同一条直线航行,某一时刻,甲船在最前面的点处,乙船在中间点处,丙船在最后面的点处,且.一架无人机在空中的点处对它们进行数据测量,在同一时刻测得 .(船只与无人机的大小及其它因素忽略不计)

(1)求此时无人机到甲、丙两船的距离之比;

(2)若此时甲、乙两船相距100米,求无人机到丙船的距离.(精确到1米)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是直线上任意一点,过,线段的垂直平分线交于点.

(Ⅰ)求点的轨迹对应的方程;

(Ⅱ)过点的直线与点的轨迹相交于两点,( 点在轴上方),点关于轴的对称点为,且,求的外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,在其定义域内既是奇函数又是减函数的是(  )
A.y=﹣x3
B.y=
C.y=x
D.y=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】当今信息时代,众多高中生也配上了手机.某校为研究经常使用手机是否对学习成绩有影响,随机抽取高三年级50名理科生的一次数学周练成绩,用茎叶图表示如下图:

(1)根据茎叶图中的数据完成下面的列联表,并判断是否有95%的把握认为经常使用手机对学习成绩有影响?

及格(

不及格

合计

很少使用手机

经常使用手机

合计

(2)从50人中,选取一名很少使用手机的同学记为甲和一名经常使用手机的同学记为乙,解一道数列题,甲、乙独立解决此题的概率分别为 ,若,则此二人适合结为学习上互帮互助的“师徒”,记为两人中解决此题的人数,若,问两人是否适合结为“师徒”?

参考公式及数据: ,其中.

0.10

0.05

0.025

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市地产数据研究所的数据显示,2016年该市新建住宅销售均价走势如下图所示,3月至7月房价上涨过快,政府从8月采取宏观调控措施,10月份开始房价得到很好的抑制.

(1)地产数据研究所发现,3月至7月的各月均价(万元/平方米)与月份之间具有较强的线性相关关系,试求关于的回归方程;

(2)政府若不调控,依次相关关系预测第12月份该市新建住宅的销售均价.

参考数据:

回归方程中斜率和截距的最小二乘法估计公示分别为:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆与抛物线共焦点,抛物线上的点My轴的距离等于,且椭圆与抛物线的交点Q满足

(I)求抛物线的方程和椭圆的方程;

(II)过抛物线上的点作抛物线的切线交椭圆于 两点,设线段AB的中点为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在(﹣∞,0)∪(0,+∞)上的奇函数f(x)满足f(2)=0,且在(﹣∞,0)上是增函数;又定义行列式=a1a4﹣a2a3; 函数g(θ)=(其中0≤θ≤).
(1)证明:函数f(x)在(0,+∞)上也是增函数;
(2)若函数g(θ)的最大值为4,求m的值;
(3)若记集合M={m|任意的0≤θ≤ , g(θ)>0},N={m|任意的0≤θ≤ , f[g(θ)]<0},求M∩N.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y).当x>0时,f(x)>0
(1)求证:f(x)是奇函数;
(2)若f(1)= ,试求f(x)在区间[﹣2,6]上的最值.

查看答案和解析>>

同步练习册答案