精英家教网 > 高中数学 > 题目详情
(2012•梅州二模)设b,c表示两条直线,α,β表示两个平面,则下列为真命题的是(  )
分析:先利用直线与平面的位置关系:直线与平面平行、直线与平面相交、直线在平面内,排除A、B、D,再利用线面平行的性质定理和面面垂直的判定定理证明C为真命题
解答:解:
b?α
c∥α
⇒b∥c
或b、c异面,排除A;
b?α
b∥c
⇒c∥α
或c?α,排除B;
c∥α
α⊥β
⇒c⊥β
或c∥β或c?β,排除D;
c∥α
c⊥β
在平面α内存在直线c′∥c,且c′⊥β,由面面垂直的判定定理知C正确;
故选C
点评:本题主要考查了线面平行的位置关系和定义,空间直线与平面位置关系的判定,面面垂直的判定定理,空间想象能力,属基础题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•梅州二模)定义在R上的函数f(x)满足:f(x+y)=f(x)f(y),且当x>0时,f(x)>1.
(1)求f(0)的值,并证明f(x)是定义域上的增函数:
(2)数列{an}满足a1=a≠0,f(an+1)=f(aan)f(a-1)(n=1,2,3,…),求数列{an}的通项公式及前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•梅州二模)一个社会调查机构就某社区居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如图).
(1)为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,求月收入在[1500,2000)(元)段应抽出的人数;
(2)为了估计该社区3个居民中恰有2个月收入在[2000,3000)(元)的概率,采用随机模拟的方法:先由计算器算出0到9之间取整数值的随机数,我们用0,1,2,3,…表示收入在[2000,3000)(元)的居民,剩余的数字表示月收入不在[2000,3000)(元)的居民;再以每三个随机数为一组,代表统计的结果,经随机模拟产生了20组随机数如下:
907  966  191  925  271  932  812  458
569  683  431  257  393  027  556  488
730  113  537  989
据此估计,计算该社区3个居民中恰好有2个月收入在[2000,3000)(元)的概率.
(3)任意抽取该社区6个居民,用ξ表示月收入在(2000,3000)(元)的人数,求ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•梅州二模)设a,b∈R,若复数z=
1+2i
1+i
,则z在复平面上对应的点在(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•梅州二模)以双曲线
x2
3
-
y2=1的左焦点为焦点,顶点在原点的抛物线方程是(  )

查看答案和解析>>

同步练习册答案