【题目】椭圆的左右焦点分别为,与轴正半轴交于点,若为等腰直角三角形,且直线被圆所截得的弦长为2.
(1)求椭圆的方程;
(2)直线:与椭圆交于点,线段的中点为,射线与椭圆交于点,点为的重心,求证:的面积为定值.
【答案】(1);(2)
【解析】分析:(1)由等腰直角三角形的性质分析可得,又由直线与圆的位置关系可得的值,进而可得的值,将的值代入椭圆的方程即可得结论;(2)根据题意,分、两种情况讨论,若直线的斜率不存在,容易求出的面积,若直线的斜率存在,设直线的方程为,设,联立直线与椭圆的方程,结合一元二次方程中根与系数的关系,求出的面积消去参数,综合两种情况可得结论.
详解:(1)由为等腰直角三角形可得,直线:被圆圆所截得的弦长为2,所以,所以椭圆的方程为.
(2)若直线的斜率不存在,则.
若直线的斜率存在,设直线的方程为,设,
即,则,,,
由题意点为重心,设,则,
所以,,代入椭圆,得
,整理得,
设坐标原点到直线的距离为,则的面积
.
综上可得的面积为定值.
科目:高中数学 来源: 题型:
【题目】合肥一中、六中为了加强交流,增进友谊,两校准备举行一场足球赛,由合肥一中版画社的同学设计一幅矩形宣传画,要求画面面积为,画面的上、下各留空白,左、右各留空白.
(1)如何设计画面的高与宽的尺寸,才能使宣传画所用纸张面积最小?
(2)设画面的高与宽的比为,且,求为何值时,宣传画所用纸张面积最小?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正项等比数列{an}满足a1 , 2a2 , a3+6成等差数列,且a42=9a1a5 ,
(1)求数列{an}的通项公式;
(2)设bn=( an+1)an , 求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列关于四棱柱的说法:
①四条侧棱互相平行且相等;
②两对相对的侧面互相平行;
③侧棱必与底面垂直;
④侧面垂直于底面.
其中正确结论的个数为( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x﹣1+ (a∈R,e为自然对数的底数).
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)求函数f(x)的极值;
(3)当a=1的值时,若直线l:y=kx﹣1与曲线y=f(x)没有公共点,求k的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知.
(1)求函数的最小正周期和对称轴方程;
(2)若,求的值域.
【答案】(1)对称轴为,最小正周期;(2)
【解析】
(1)利用正余弦的二倍角公式和辅助角公式将函数解析式进行化简得到,由周期公式和对称轴公式可得答案;(2)由x的范围得到,由正弦函数的性质即可得到值域.
(1)
令,则
的对称轴为,最小正周期;
(2)当时,,
因为在单调递增,在单调递减,
在取最大值,在取最小值,
所以,
所以.
【点睛】
本题考查正弦函数图像的性质,考查周期性,对称性,函数值域的求法,考查二倍角公式以及辅助角公式的应用,属于基础题.
【题型】解答题
【结束】
21
【题目】已知等比数列的前项和为,公比,,.
(1)求等比数列的通项公式;
(2)设,求的前项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,其中PA=PD=AD=2,∠BAD=60°,点M在线段PC上,且PM=2MC,N为AD的中点.
(1)求证:平面PAD⊥平面PNB;
(2)若平面PAD⊥平面ABCD,求三棱锥P﹣NBM的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com