精英家教网 > 高中数学 > 题目详情

【题目】综合题。
(1)已知直线l经过点P(4,1),且在两坐标轴上的截距相等,求直线l的方程;
(2)已知直线l经过点P(3,4),且直线l的倾斜角为θ(θ≠90°),若直线l经过另外一点(cosθ,sinθ),求此时直线l的方程.

【答案】
(1)解:当直线过原点时,方程为 y= x,即 x﹣4y=0.

当直线不过原点时,设直线的方程为 x+y=k,把点A(4,1)代入直线的方程可得 k=5,

故直线方程是 x+y﹣5=0.

综上,所求的直线方程为 x﹣4y=0,或 x+y﹣5=0


(2)解:直线l的斜率为k=tanθ=

解得4cosθ=3sinθ,即tanθ=

所以直线l的斜率为 ,直线l的方程为y= x


【解析】(1)当直线过原点时,方程为 y= x,当直线不过原点时,设直线的方程为 x+y=k,把点A(4,1)代入直线的方程可得 k值,即得所求的直线方程.(2)利用直线上两点以及直线倾斜角表示直线斜率,得到关于θ的等式,求出tanθ.
【考点精析】利用截距式方程对题目进行判断即可得到答案,需要熟知直线的截距式方程:已知直线轴的交点为A,与轴的交点为B,其中

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设离心率为 的椭圆 的左、右焦点为 , PE上一点, , 内切圆的半径为 .

(1)E的方程;

(2)矩形ABCD的两顶点CD在直线AB在椭圆E,若矩形ABCD的周长为 , 求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别是A,B,C的对边,且 sinA=
(1)若a2﹣c2=b2﹣mbc,求实数m的值;
(2)若a=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】脱贫是政府关注民生的重要任务,了解居民的实际收入状况就显得尤为重要.现从某地区随机抽取100个农户,考察每个农户的年收入与年积蓄的情况进行分析,设第i个农户的年收入xi(万元),年积蓄yi(万元),经过数据处理得 . (Ⅰ)已知家庭的年结余y对年收入x具有线性相关关系,求线性回归方程;
(Ⅱ)若该地区的农户年积蓄在5万以上,即称该农户已达小康生活,请预测农户达到小康生活的最低年收入应为多少万元?
附:在 = x+ 中, = = ,其中 为样本平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某货运员拟运送甲、乙两种货物,每件货物的体积、重量、可获利润如表所示:

体积(升/件)

重量(公斤/件)

利润(元/件)

20

10

8

10

20

10

在一次运输中,货物总体积不超过110升,总重量不超过100公斤,那么在合理的安排下,一次运输获得的最大利润为(
A.65元
B.62元
C.60元
D.56元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一个动点P在圆x2+y2=36上移动,它与定点Q(4,0)所连线段的中点为M.
(1)求点M的轨迹方程.
(2)过定点(0,﹣3)的直线l与点M的轨迹交于不同的两点A(x1 , y1),B(x2 , y2)且满足 + = ,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)

的对边分别为已知成等比数列.求:

(1) 的值;

(2) 的值;

(3) 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直三棱柱ABC﹣A1B1C1 , 点P、Q分别在棱AA1和CC1上,AP=C1Q,则平面BPQ把三棱柱分成两部分的体积比为(

A.2:1
B.3:1
C.3:2
D.4:3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为(
A.(kπ﹣ ,kπ+ ,),k∈z
B.(2kπ﹣ ,2kπ+ ),k∈z
C.(k﹣ ,k+ ),k∈z
D.( ,2k+ ),k∈z

查看答案和解析>>

同步练习册答案