精英家教网 > 高中数学 > 题目详情
已知ω>0,函数f(x)=sin(ωx+
π
3
)在(
π
2
,π
)上单调递减.则ω的取值范围是(  )
分析:由题意可得函数的周期T=
ω
≥π,ω≤2.再由函数f(x)=sin(ωx+
π
3
)满足 2kπ+
π
2
≤ωx+
π
3
≤2kπ+
2
,k∈z,求得
2kπ
ω
+
π
≤x≤
2kπ
ω
+
,k∈z.可得函数f(x)的一个减区间为[
π
].再由
π
π
2
≥π
,求得ω的范围.
解答:解:∵函数f(x)=sin(ωx+
π
3
)在(
π
2
,π
)上单调递减,
∴函数的周期T=
ω
≥π,∴ω≤2.
再由函数f(x)=sin(ωx+
π
3
)满足 2kπ+
π
2
≤ωx+
π
3
≤2kπ+
2
,k∈z,
求得
2kπ
ω
+
π
≤x≤
2kπ
ω
+
,k∈z.
再令k=0,可得
π
≤x≤
,故函数f(x)的一个减区间为[
π
].
再由
π
π
2
≥π
,求得
1
3
≤ω≤
6

故选B.
点评:本题给出函数y=Asin(ωx+φ)的一个单调区间,求ω的取值范围,着重考查了正弦函数的单调性和三角函数的图象变换等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>0,函数f(x)=
1-ax
x
,x∈({0,+∞}),设0<x1
2
a
,记曲线y=f(x)在点M(x1,f(x1))处的切线为l,
(1)求l的方程;
(2)设l与x轴交点为(x2,0)证明:0<x2
1
a

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,函数f(x)=x3-a,x∈(0,+∞),设x1>0,记曲线y=f(x)在点(x1,f(x1))处的切线为l,
(1)求l的方程;
(2)设l与x轴交点为(x2,0)证明:
x2a
1
3

②若x2a
1
3
a
1
3
x2x1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,函数f(x)=ax2+bx+c,若x0满足关于x的方程2ax+b=0,则下列选项的命题中为假命题的是(  )
A、?x∈R,f(x)≤f(x0B、?x∈R,f(x)≥f(x0C、?x∈R,f(x)≤f(x0D、?x∈R,f(x)≥f(x0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a≤0,函数f(x)=|x|(x-a).
(I)讨论f(x)在R上的奇偶性;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)求函数f(x)在闭区间[-1,
12
]的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数m≠0,函数f(x)=
3x-m,(x≤2)
-x-2m,(x>2)
,若f(2-m)=f(2+m),则实数m的值为
-
8
3
和8
-
8
3
和8

查看答案和解析>>

同步练习册答案