精英家教网 > 高中数学 > 题目详情

【题目】菱形中,平面

1)证明:直线平面

2)求二面角的正弦值;

3)线段上是否存在点使得直线与平面所成角的正弦值为?若存在,求;若不存在,说明理由.

【答案】(1)证明见解析(2)(3)存在,

【解析】

1)建立以为原点,分别以中点),的方向为轴,轴,轴正方向的空间直角坐标系,求出直线的方向向量,平面的法向量,证明向量垂直,得到线面平行;

2)利用空间向量法求出二面角的余弦值,再由同角三角函数的基本关系求出正弦值;

3)设,则,利用空间向量求表示出线面角的正弦值,求出的值,得解.

解:建立以为原点,分别以中点),的方向为轴,轴,轴正方向的空间直角坐标系(如图),

.

1)证明:

为平面的法向量,

,即

可得

,可得

又因为直线平面,所以直线平面

2

为平面的法向量,

,即,可得

为平面的法向量,

,即,可得

所以

所以二面角的正弦值为

3)设,则

为平面的法向量,

,即

可得

,得

解得(舍),所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的导函数,则下列结论中正确的是(

A.函数的值域与的值域不相同

B.把函数的图象向右平移个单位长度,就可以得到函数的图象

C.函数在区间上都是增函数

D.是函数的极值点,则是函数的零点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是无穷等比数列,若的每一项都等于它后面所有项的倍,则实数的取值范围是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等比数列{an}的各项均为正数,且2a1+3a2=1, =9a2a6.

(1)求数列{an}的通项公式;

(2)设bn=log3a1+log3a2+…+log3an,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,对于项数为的有穷数列,令中最大值,称数列为数列的“创新数列”.例如数列3547的创新数列为3557. 考查正整数12,…,的所有排列,将每种排列都视为一个有穷数列.

1)若,写出创新数列为3444的所有数列

2)是否存在数列的创新数列为等比数列?若存在,求出符合条件的的创新数列;若不存在,请说明理由.

3)是否存在数列,使它的创新数列为等差数列?若存在,求出满足所有条件的数列的个数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 y f(x) 的定义域为[2.1,2],其图像如下图所示,且 f(2.1) 0.96

1)若函数 yf(x) k恰有两个不同的零点,则 k_____

2)已知函数 g ( x) yg[f(x)] _____个不同的零点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,点满足方程.

1)求点M的轨迹C的方程;

2)作曲线C关于轴对称的曲线,记为,在曲线C上任取一点,过点P作曲线C的切线l,若切线l与曲线交于AB两点,过点AB分别作曲线的切线,证明的交点必在曲线C.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列满足:对任意正整数,都有成等差数列,成等比数列,且

)求证:数列是等差数列;

)求数列的通项公式;

)设=++…+,如果对任意的正整数,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有次水下考古活动中,潜水员需潜入水深为30米的水底进行作业,其用氧量包含以下三个方面:①下潜时,平均速度为每分钟米,每分钟的用氧量为升;②水底作业需要10分钟,每分钟的用氧量为0.3升;③返回水面时,速度为每分钟米,每分钟用氧量为0.2升;设潜水员在此次考古活动中的总用氧量为升;

(1)将表示为的函数;

(2)若,求总用氧量的取值范围.

查看答案和解析>>

同步练习册答案