精英家教网 > 高中数学 > 题目详情

【题目】下列说法中:

①若,满足,则的最大值为

②若,则函数的最小值为

③若,满足,则的最小值为

④函数的最小值为

正确的有__________.(把你认为正确的序号全部写上)

【答案】③④

【解析】

①令,得出,再利用双勾函数的单调性判断该命题的正误;

②将函数解析式变形为,利用基本不等式判断该命题的正误;

③由得出,得出,利用基本不等式可判断该命题的正误;

④将代数式与代数式相乘,展开后利用基本不等式可求出

的最小值,进而判断出该命题的正误。

①由,则,则

,则,则,则上减函数,则上为增函数,

时,取得最小值,当时,,故的最大值为,错误;

②若,则函数

即函数的最大值为,无最小值,故错误;

③若,满足,则,则

,得

当且仅当,即,即时取等号,

的最小值为,故③正确;

当且仅当,即,即时,取等号,

即函数的最小值为,故④正确,故答案为:③④。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设点为坐标原点,椭圆的右顶点为,上顶点为,过点且斜率为的直线与直线相交于点,且.

(1)求椭圆的离心率

(2)是圆的一条直径,若椭圆经过两点,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学从高三男生中随机抽取n名学生的身高,将数据整理,得到的频率分布表如表所示:

组号

分组

频数

频率

第1组

5

0.05

第2组

a

0.35

第3组

30

b

第4组

20

0.20

第5组

10

0.10

合计

n

1.00

(1)求出频率分布表中的值,并完成下列频率分布直方图;

(2)为了能对学生的体能做进一步了解,该校决定在第1,4,5组中用分层抽样取7名学生进行不同项目的体能测试,若在这7名学生中随机抽取2名学生进行引体向上测试,求第4组中至少有一名学生被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,那么下列结论中错误的是( )

A. 的极小值点,则在区间上单调递减

B. ,使

C. 函数的图像可以是中心对称图形

D. 的极值点,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆 + =1(a>b>0)的左焦点为F,右顶点为A,离心率为 .已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为
(Ⅰ)求椭圆的方程和抛物线的方程;
(Ⅱ)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于A),直线BQ与x轴相交于点D.若△APD的面积为 ,求直线AP的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: + =1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1, ),P4(1, )中恰有三点在椭圆C上.(12分)
(1)求C的方程;
(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过点,且圆心在直线.

1)求圆的方程;

2)过点的直线与圆交于两点,问在直线上是否存在定点,使得恒成立?若存在,请求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若对于恒成立,求实数的取值范围

(2)若对于恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设实数满足约束条件,的取值范围是( )

A. B. C. D.

查看答案和解析>>

同步练习册答案