精英家教网 > 高中数学 > 题目详情
4.命题“?x0∈R,使得x02>4”的否定是(  )
A.?x0∉R,使得$x_0^2>4$B.?x0∉R,使得$x_0^2≤4$
C.?x∈R,x2>4D.?x∈R,x2≤4

分析 利用特称命题的否定是全称命题,写出结果即可.

解答 解:因为特称命题的否定是全称命题,所以,命题“?x0∈R,使得x02>4”的否定是:?x∈R,x2≤4.
故选:D.

点评 本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.计算下列各题:
(1)0.001${\;}^{-\frac{1}{3}}$-($\frac{7}{8}$)0+16${\;}^{\frac{3}{4}}$+($\sqrt{2}$•$\root{3}{3}$)6
(2)log3$\sqrt{27}$+lg25+lg4+7log72+(-9.8)0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=loga(x-a)+1(a>0,且a≠1)过点(6,3).
(1)求实数a的值.
(2)设函数h(x)=ax+1,函数F(x)=[h(x)+2]2的图象恒在函数G(x)=h(2+x)+m+2的图象上方,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.计算:(0.064)${\;}^{-\frac{1}{3}}$+[(-2)5]${\;}^{-\frac{2}{5}}$-($\frac{1}{16}$)0.75+sin210°+log2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,侧面PAD是边长为2的正三角形,平面ABCD⊥平面PAD,M是PC的中点,O是AD的中点,则直线BM与平面PCO所成角的正弦值是$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列语句中是命题的是(  )
A.|x+a|B.0∈NC.集合与简易逻辑D.真子集

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数y=loga(x+4)-1(a>0,且a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中m>0,n>0,则$\frac{1}{m}+\frac{3}{n}$的最小值为12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.函数f(x)=-x3+1在R上是否具有单调性?如果具有单调性,它在R上是增函数还是减函数?试证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.Sn为数列{an}的前n项和,Sn=n2+n
(Ⅰ)求数列{an}的通项公式
(Ⅱ)求证:数列{an}是等差数列
(Ⅲ)设数列{bn}是首项为1,公比为$\frac{1}{2}$的等比数列,求数列{an•bn}的前n项和Tn

查看答案和解析>>

同步练习册答案