精英家教网 > 高中数学 > 题目详情
在ABC中,a,b,c为角A,B,C所对的边,sin2C+sinAsinB=sin2A+sin2B
(1)求角C的大小;
(2)若c=2,且sinC+sin(B-A)=2sin2A,求△ABC的面积.
考点:余弦定理的应用,正弦定理
专题:解三角形
分析:(1)原式可化简为a2+b2-c2=ab,由余弦定理知cosC=
a2+b2-c2
2ab
=
1
2
,即可求得C=
π
3

(2)化简可得sinBcosA=2sinAcosA,分cosA=0或者cosA≠0讨论,由正弦定理、余弦定理和三角形面积公式即可得解.
解答: 解(1)已知等式sin2C+sinAsinB=sin2A+sin2B,利用正弦定理化简得:c2+ab=a2+b2,即a2+b2-c2=ab,
∴cosC=
a2+b2-c2
2ab
=
1
2

又0<C<π,
∴C=
π
3

(2)∵sinC+sin(B-A)=sin(B+A)+sin(B-A)=2sin2A,
∴sinBcosA=2sinAcosA,
当cosA=0,即A=
π
2
,此时b=
2
3
3
,S△ABC=
bc
2
=
2
3
3

当cosA≠0,得到sinB=2sinA,利用正弦定理得:b=2a,
由余弦定理知c2=a2+b2-2abcosC,代入b=2a,c=2整理可得a2=
4
3
,即有a=
2
3
3

此时S△ABC=
1
2
×a×b×sinC
=
2
3
3
点评:本题主要考察了正弦定理、余弦定理和三角形面积公式的综合应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足an=2an-1+1(n≥2)且a1=1,bn=log2(a2n+1+1),cn=
1
b
2
n
-1
.求证:
(Ⅰ)数列{an+1}为等比数列,并求数列{an}的通项公式;
(Ⅱ)数列{cn}的前n项和Sn
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

若已知集合A={x|-1≤x≤2},B={x|x<1},则A∩B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若x,y∈(0,+∞),x+2y+xy=30.求xy,x+y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在空间直角坐标系中,已知A(2,5,-2),B(-1,6,0),则AB=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为[-1,5],部分对应值如下表,f(x)的导函数y=f′(x)的图象如图所示.下列关于f(x)的命题:
x-1045
f(x)1221
①函数f(x)的极大值点为0,4;
②函数f(x)在[0,2]上是减函数;
③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;
④当1<a<2时,函数y=f(x)-a有4个零点.
其中正确命题的个数有
 
 个.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:椭圆C1
x2
4
+
y2
1
=1,椭圆C2
y2
8
+
x2
2
=1,则在这两个椭圆的a、b、c、e四个量中,相同的量是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

作出函数y=x
1
3
的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)对任意的实数a,b均有f(a+b)=f(a)•f(b),且当x<0时,f(x)>1.
(1)求f(0)的值;
(2)求证:对任意的x∈R都有f(x)>0;
(3)求证:f(x)在R上为减函数;
(4)当f(4)=
1
16
时,解不等式f(x-3)•f(5-x2)<
1
4

查看答案和解析>>

同步练习册答案