精英家教网 > 高中数学 > 题目详情

【题目】某中学为了了解全校学生的阅读情况,在全校采用随机抽样的方法抽取了60名学生(其中初中组和高中组各30名)进行问卷调查,并将他们在一个月内去图书馆的次数进行了统计,将每组学生去图书馆的次数分为5组: ,分别制作了如图所示的频率分布表和频率分布直方图.

分组

人数

频率

3

9

9

0.2

0.1

(1)完成频率分布表,并求出频率分布直方图中的值;

(2)在抽取的60名学生中,从在一个月内去图书馆的次数不少于16次的学生中随机抽取3人,并用 表示抽得的高中组的人数,求的分布列和数学期望.

【答案】(1)见解析;(2)见解析.

【解析】试题分析:(1)根据频率分布直方图中矩形和面积为1可求的值;

(2)抽得的高中组的人数服从超几何分布,利用超几何分布的原理列分布列求期望即可.

试题解析:

(1)频率分布表如图所示:

分组

人数

频率

3

0.1

9

0.3

9

0.3

6

0.2

3

0.1

由频率分布直方图知,解得.

(2)由频率分布表知,初中组一个月内去图书馆的次数不少于16次的学生有3人,高中组一个月内去图书馆的次数不少于16次的学生的频率为,所以,人数为人,

所以的可能取值为0,1,2,3,

于是

所以的分布列为

0

1

2

3

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司在迎新年晚会上举行抽奖活动,有甲、乙两个抽奖方案供员工选择;

方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率为.第一次抽奖,若未中奖,则抽奖结束.若中奖,则通过抛一枚质地均匀的硬币,决定是否继续进行第二次抽奖,规定:若抛出硬币,反面朝上,员工则获得500元奖金,不进行第二次抽奖;若正面朝上,员工则须进行第二次抽奖,且在第二次抽奖中,若中奖,获得奖金1000元;若未中奖,则所获奖金为0元.

方案乙:员工连续三次抽奖,每次中奖率均为,每次中奖均可获奖金400元.

(1)求某员工选择方案甲进行抽奖所获奖金(元)的分布列;

(2)某员工选择方案乙与选择方案甲进行抽奖,试比较哪个方案更划算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车的出现方便了人们的出行,深受我市居民的喜爱.为调查某校大学生对共享单车的使用情况,从该校8000名学生中按年级用分层抽样的方式随机抽取了100位同学进行调查,得到这100名同学每周使用共享单车的时间(单位:小时)如表:

使用时间

人数

10

40

25

20

5

(Ⅰ)已知该校大一学生由2400人,求抽取的100名学生中大一学生人数;

(Ⅱ)作出这些数据的频率分布直方图;

(Ⅲ)估计该校大学生每周使用共享单车的平均时间(同一组中的数据用该组区间的中点值作代表).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为实数,

(1)若函数的图象过点,且方程有且只有一个实根,求的表达式;

(2)在(1)的条件下,当时,是单调函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=max{x2﹣ax+a,ax﹣a+1},其中max{x,y}= . (Ⅰ)若对任意x∈R,恒有f(x)=x2﹣ax+a,求实数a的值;
(Ⅱ)若a>1,求f(x)的最小值m(a).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于下列命题: ①若函数y=2x的定义域是{x|x≤0},则它的值域是{y|y≤1};
②若函数y= 的定义域是{x|x>2},则它的值域是{y|y≤ };
③若函数y=x2的值域是{y|0≤y≤4},则它的定义域一定是{x|﹣2≤x≤2};
④若函数y=log2x的值域是{y|y≤3},则它的定义域是{x|0<x≤8}.
其中不正确的命题的序号是 . (注:把你认为不正确的命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 的定义域是R,则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在长方体中,分别是的中点,,过三点的的平面截去长方体的一个角后.得到如图所示的几何体,且这个几何体的体积为

(1)求证:平面

(2)求的长;

(3)在线段上是否存在点,使直线垂直,如果存在,求线段的长,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面为平行四边形, .

(Ⅰ)证明: 平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

同步练习册答案