精英家教网 > 高中数学 > 题目详情
已知等比数列{an}的前n项和为S n=3 n+m,且a1=2
(Ⅰ)求实数m 的值及数列{an}通项公式;
(Ⅱ)若数列{bn}满足bn-an=n+6 (n∈N+),求数列{bn}的前n项和Tn
分析:(Ⅰ)由S 1=3+m=2,可求m,a1,结合等比数列的通 项公式可求an
(Ⅱ)由bn-an=n+6可求bn,然后利用分组求和,结合等差数列与等比数列的求和公式即可求解
解答:解:(Ⅰ)∵S 1=3+m=2,
∴m=-1,a1=2,
∴an=2×3n-1
(Ⅱ)∵bn-an=n+6
∴bn=n+6+2×3n-1
∴Tn=(1+6)+(2+6)+…+(n+6)+2×(1+3+32+…+3n-1
=6n+(1+2+3+…+n)+2×
1-3n
1-3

=3n-1+6n+
n(n+1)
2
点评:本题主要考查了等比数列 的通 项公式、求和公式及等差数列的求和公式的简单应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、已知等比数列{an}的前n项和为Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,则q等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a2=9,a5=243.
(1)求{an}的通项公式;
(2)令bn=log3an,求数列{
1bnbn+1
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}满足a1•a7=3a3a4,则数列{an}的公比q=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中a1=64,公比q≠1,且a2,a3,a4分别为某等差数列的第5项,第3项,第2项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a3+a6=36,a4+a7=18.若an=
12
,则n=
9
9

查看答案和解析>>

同步练习册答案