【题目】已知函数在上单调递减,且满足, (Ⅰ) 求的取值范围;(Ⅱ)设,求在上的最大值和最小值
【答案】:(Ⅰ)
(Ⅱ)(i)当时,在上取得最小值 ,在上取得最大值
当 时,在 取得最大值 ,在 取得最小值
当 时, 在 取得最小值 在 取得最大值
当 时,在取得最小值
当 时, 在取得最小值
【解析】:(Ⅰ)由,得
则 ,依题意须对于任意 ,有 当时,因为二次函数 的图像开口向上,而 ,所以须 ,即
当 时,对任意 有 ,符合条件;
当时,对于任意 ,,符合条件;
当 时,因, 不符合条件,故的取值范围为
(Ⅱ)因
(i)当时, ,在上取得最小值 ,在上取得最大值
(ii)当 时,对于任意 有 ,在 取得最大值 ,在 取得最小值
(iii)当时,由 得
则当 时,在取得最小值
当 时, 在取得最小值
科目:高中数学 来源: 题型:
【题目】某闯关游戏共有两关,游戏规则:先闯第一关,当第一关闯过后,才能进入第二关,两关都闯过,则闯关成功,且每关各有两次闯关机会.已知闯关者甲第一关每次闯过的概率均为,第二关每次闯过的概率均为.假设他不放弃每次闯关机会,且每次闯关互不影响.
(1)求甲恰好闯关3次才闯关成功的概率;
(2)记甲闯关的次数为,求随机变量的分布列和期望.。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P—ABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,N为AD的中点.
(1)求异面直线PB与CD所成角的余弦值;
(2)点M在线段PC上且满足,直线MN与平面PBC所成角的正弦值为,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,则AC1与底面ABC所成角的余弦值等于( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过点的椭圆的离心率为,椭圆与轴交于两点、,过点的直线与椭圆交于另一点,并与轴交于点,直线与直线交于点.
(1)求该椭圆的标准方程;
(2)当点异于点时,求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年9月,台风“山竹”在我国多个省市登陆,造成直接经济损失达52亿元.某青年志愿者组织调查了某地区的50个农户在该次台风中造成的直接经济损失,将收集的数据分成五组:,,,,(单位:元),得到如图所示的频率分布直方图.
(1)试根据频率分布直方图估计该地区每个农户的平均损失(同一组中的数据用该组区间的中点值代表);
(2)台风后该青年志愿者与当地政府向社会发出倡议,为该地区的农户捐款帮扶,现从这50户并且损失超过4000元的农户中随机抽取2户进行重点帮扶,设抽出损失超过8000元的农户数为,求的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com