精英家教网 > 高中数学 > 题目详情

【题目】已知函数上单调递减,且满足 () 求的取值范围;()设,求在上的最大值和最小值

答案

(i)当时,上取得最小值 ,在上取得最大值

时, 取得最大值 ,在 取得最小值

时, 取得最小值 取得最大值

时,取得最小值

时, 取得最小值

解析)由

依题意须对于任意 ,有时,因为二次函数 的图像开口向上,而 ,所以须 ,即

时,对任意符合条件;

时,对于任意符合条件;

时,因 不符合条件,故的取值范围为

(i)当时,上取得最小值 ,在上取得最大值

(ii)当 时,对于任意 取得最大值 ,在 取得最小值

(iii)当时,由

  1. ,即 时,上单调递增, 取得最小值 取得最大值
  2. ,即 时, 取得最大值 ,在 取得最小值,而

则当 时,取得最小值

时, 取得最小值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某闯关游戏共有两关,游戏规则:先闯第一关,当第一关闯过后,才能进入第二关,两关都闯过,则闯关成功,且每关各有两次闯关机会.已知闯关者甲第一关每次闯过的概率均为,第二关每次闯过的概率均为.假设他不放弃每次闯关机会,且每次闯关互不影响.

(1)求甲恰好闯关3次才闯关成功的概率;

(2)记甲闯关的次数为,求随机变量的分布列和期望.。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,PA⊥平面ABCD,∠ABC=∠BAD90°,ADAP4ABBC2NAD的中点.

1)求异面直线PBCD所成角的余弦值;

2)点M在线段PC上且满足,直线MN与平面PBC所成角的正弦值为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求在点处的切线方程;

(Ⅱ)若,求函数的单调区间;

(Ⅲ)若对任意的上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,则AC1与底面ABC所成角的余弦值等于( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点的椭圆的离心率为,椭圆与轴交于两点,过点的直线与椭圆交于另一点,并与轴交于点,直线与直线交于点.

(1)求该椭圆的标准方程;

(2)当点异于点时,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年9月,台风“山竹”在我国多个省市登陆,造成直接经济损失达52亿元.某青年志愿者组织调查了某地区的50个农户在该次台风中造成的直接经济损失,将收集的数据分成五组:(单位:元),得到如图所示的频率分布直方图.

(1)试根据频率分布直方图估计该地区每个农户的平均损失(同一组中的数据用该组区间的中点值代表);

(2)台风后该青年志愿者与当地政府向社会发出倡议,为该地区的农户捐款帮扶,现从这50户并且损失超过4000元的农户中随机抽取2户进行重点帮扶,设抽出损失超过8000元的农户数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,二面角的中点,点上,且

1)求证:四边形为直角梯形;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直线与抛物线交于两点,线段的垂直平分线与直线交于点,当为抛物线上位于线段下方(含)的动点时,则面积的最大值为______.

查看答案和解析>>

同步练习册答案