【题目】已知集合且,设.
若2,3,4,5,和2,3,4,5,,分别求S的值;
若集合A中所有元素之和为55,求S的最小值;
若集合A中所有元素之和为103,求S的最小值.
【答案】(1);(2);(3).
【解析】
由的公式,计算可得所求和;
集合A中的元素为正整数,且S的公式,可得A中元素为,计算可得所求最小值;
集合A中的元素为正整数,且的公式,可得A中元素为,计算可得所求最小值.
解:2,3,4,5,,
可得;
2,3,4,5,,
可得;
集合A中所有元素之和为55,
由,
,
要使S取得最小值,不妨设,
可使较小的前5个数,尽可能差距最小,即相邻,
可得1,2,3,4,5,最大数为40,
则,
可得S的最小值为280;
若集合A中所有元素之和为103,
由,
,
要使S取得最小值,不妨设,
可使较小的前5个数,尽可能差距最小,即相邻,
可得1,2,3,4,5,最大数为88,
则.
可得S的最小值为568.
科目:高中数学 来源: 题型:
【题目】如果函数在其定义域内存在,使得成立,则称函数为“可分拆函数”.
(1)试判断函数是否为“可分拆函数”?并说明你的理由;
(2)设函数为“可分拆函数”,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某知名品牌汽车深受消费者喜爱,但价格昂贵.某汽车经销商推出A、B、C三种分期付款方式销售该品牌汽车,并对近期100位采用上述分期付款的客户进行统计分析,得到如下的柱状图.已知从A、B、C三种分期付款销售中,该经销商每销售此品牌汽车1俩所获得的利润分别是1万元,2万元,3万元.现甲乙两人从该汽车经销商处,采用上述分期付款方式各购买此品牌汽车一辆.以这100位客户所采用的分期付款方式的频率代替1位客户采用相应分期付款方式的概率.
(1)求甲乙两人采用不同分期付款方式的概率;
(2)记X(单位:万元)为该汽车经销商从甲乙两人购车中所获得的利润,求X的分布列与期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的长轴长为6,离心率为 ,F2为椭圆的右焦点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)点M在圆x2+y2=8上,且M在第一象限,过M作圆x2+y2=8的切线交椭圆于P,Q两点,判断△PF2Q的周长是否为定值并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ,g(x)=lnx,其中e为自然对数的底数.
(1)求函数y=f(x)g(x)在x=1处的切线方程;
(2)若存在x1 , x2(x1≠x2),使得g(x1)﹣g(x2)=λ[f(x2)﹣f(x1)]成立,其中λ为常数,求证:λ>e;
(3)若对任意的x∈(0,1],不等式f(x)g(x)≤a(x﹣1)恒成立,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com