精英家教网 > 高中数学 > 题目详情
9.已知复数z=$\frac{1-i}{1+i}$,$\overrightarrow{z}$是z的共轭复数,则z•$\overrightarrow{z}$=(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.4D.1

分析 由条件利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,求得z的值,可得$\overline{z}$,从而求得z•$\overline{z}$的值.

解答 解:z=$\frac{1-i}{1+i}$=$\frac{(1-i)^{2}}{(1+i)(1-i)}$=$\frac{-2i}{2}$=-i,则$\overline{z}$=i,
则则z•$\overrightarrow{z}$=1,
故选:D.

点评 本题主要考查复数基本概念,两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.下列命题正确的是(  )
A.若$\underset{lim}{n→∞}$(an•bn)=a≠0,则$\underset{lim}{n→∞}$an≠0且$\underset{lim}{n→∞}$bn≠0
B.若$\underset{lim}{n→∞}$(an•bn)=0,则$\underset{lim}{n→∞}$an=0或$\underset{lim}{n→∞}$bn=0
C.若无穷数列{an}有极限,且它的前n项和为Sn,则$\underset{lim}{n→∞}{S}_{n}$=$\underset{lim}{n→∞}$a1+$\underset{lim}{n→∞}$a2+…+$\underset{lim}{n→∞}$an
D.若无穷数列{an}有极限,则$\underset{lim}{n→∞}$an=$\underset{lim}{n→∞}$an+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.给出下列函数:
①f(x)=xsinx;
②f(x)=ex+x;
③f(x)=ln($\sqrt{1+{x}^{2}}$-x);
?a>0,使${∫}_{-a}^{a}$f(x)dx=0的函数是(  )
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知数列{an}满足an+1+2an=0,a2=-6,则{an}的前10项和等于-1023.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知f(x)=sin(2x+φ)的图象向右平移$\frac{π}{12}$个单位后得到的函数g(x)的图象,则“函数g(x)的图象关于点($\frac{π}{6}$,0)中心对称”是“φ=-$\frac{π}{6}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.定义:若点M(x0,y0)在椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上,则点N($\frac{{x}_{0}}{a}$,$\frac{{y}_{0}}{b}$)为点M的一个“依附点”.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长半轴长和焦距均为2,若椭圆C的弦AB的端点A,B的“依附点”分别是P,Q,且OP⊥OQ.
(I)求椭圆C的方程;
(Ⅱ)求证:S△OAB为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.定义在R上的奇函数y=f(x)满足f(x+2)=f(-x),则f(2008)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若正数x,y满足x2+4y2+x+2y=1,则xy的最大值为$\frac{2-\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.命题“若p不正确,则q不正确”的等价命题是(  )
A.若q不正确,则p不正确B.若q正确,则p正确
C.若p正确,则q不正确D.若p正确,则q正确

查看答案和解析>>

同步练习册答案