精英家教网 > 高中数学 > 题目详情

【题目】市某机构为了调查该市市民对我国申办2034年足球世界杯的态度,随机选取了位市民进行调查,调查结果统计如下:

不支持

支持

合计

男性市民

女性市民

合计

(1)根据已知数据把表格数据填写完整;

(2)利用(1)完成的表格数据回答下列问题:

(i)能否有的把握认为支持申办足球世界杯与性别有关;

(ii)已知在被调查的支持申办足球世界杯的男性市民中有位退休老人,其中位是教师,现从这位退体老人中随机抽取人,求至多有位老师的概率.

参考公式:,其中.

参考数据:

【答案】(1)见解析;(2)(i)有的把握认为支持申办足球世界杯与性别有关. (ii).

【解析】分析:(1)根据已知数据的关系把表格数据填写完整.(2) (i)利用公式求出,再根据参考数据表判定能否有的把握认为支持申办足球世界杯与性别有关. (ii)利用古典概型求至多有位老师的概率.

详解:(1)

不支持

支持

合计

男性市民

女性市民

合计

(2)(i)由已知数据可求得

所以有的把握认为支持申办足球世界杯与性别有关.

(ii)从人中任意取人的情况有种,其中至多有位教师的情况有种,

故所求的概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,正方形中,分别是的中点将分别沿折起,使重合于点.则下列结论正确的是( )

A.

B. 平面

C. 二面角的余弦值为

D. 在平面上的投影是的外心

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经国务院批复同意,郑州成功入围国家中心城市,某校学生团针对“郑州的发展环境”对20名学生进行问卷调查打分(满分100分),得到如图1所示茎叶图.

(1)分别计算男生女生打分的平均分,并用数学特征评价男女生打分的数据分布情况;

(2)如图2按照打分区间绘制的直方图中,求最高矩形的高;

(3)从打分在70分以下(不含70分)的同学中抽取3人,求有女生被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A,B,C是圆O上不同的三点,线段CO与线段AB交于点D,若 (λ∈R,μ∈R),则λ+μ的取值范围是(
A.(1,+∞)
B.(0,1)
C.(1, ]
D.(﹣1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,有以下结论:

平面

平面

④异面直线所成的角为.

则其中正确结论的序号是____(写出所有正确结论的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,已知曲线C1:ρ=2cosθ和曲线C2:ρcosθ=3,以极点O为坐标原点,极轴为x轴非负半轴建立平面直角坐标系.
(Ⅰ)求曲线C1和曲线C2的直角坐标方程;
(Ⅱ)若点P是曲线C1上一动点,过点P作线段OP的垂线交曲线C2于点Q,求线段PQ长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左焦点左顶点.

(Ⅰ)求椭圆的方程;

(Ⅱ)已知是椭圆上的两点是椭圆上位于直线两侧的动点.若,试问直线的斜率是否为定值?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,已知曲线C1:ρ=2cosθ和曲线C2:ρcosθ=3,以极点O为坐标原点,极轴为x轴非负半轴建立平面直角坐标系.
(Ⅰ)求曲线C1和曲线C2的直角坐标方程;
(Ⅱ)若点P是曲线C1上一动点,过点P作线段OP的垂线交曲线C2于点Q,求线段PQ长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若如下框图所给的程序运行结果为,那么判断框中应填入的关于的条件是(

A. B. C. D.

查看答案和解析>>

同步练习册答案