精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分12分)已知函数)的最小正周

期为

)求的值;

)将函数的图像上各点的横坐标缩短到原来的,纵坐标不变,得到函数

的图像,求函数在区间上的最小值.

【答案】(11;(21.

【解析】试题分析:()将函数式整理变形为的形式,由函数周期可求得的值;()由()中求得的函数式按照平移规律得到函数,由定义域求得的取值范围,结合函数单调性可求得函数的最小值

试题解析:(∵fx=sinπ﹣ωxcosωx+cos2ωx

∴fx=sinωxcosωx+

=sin2ωx+cos2ωx+

=sin2ωx++

由于ω0,依题意得

所以ω=1

)由()知fx=sin2x++

∴gx=f2x=sin4x++

∵0≤x≤时,≤4x+

≤sin4x+≤1

∴1≤gx

gx)在此区间内的最小值为1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】

如图,某城市有一块半径为40的半圆形(以为圆心,为直径)绿化区域,现计划对其进行改建,在的延长线上取点,使,在半圆上选定一点,改建后的绿化区域由扇形区域和三角形区域组成,其面积为,设

(1)写出关于的函数关系式,并指出的取值范围;

(2)试问多大时,改建后的绿化区域面积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,已知底面,且的中点,上,且.

1)求证:平面平面

2)求证:平面

3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校在“普及环保知识节”后,为了进一步增强环保意识,从本校学生中随机抽取了一批学生参加环保基础知识测试.经统计,这批学生测试的分数全部介于75至100之间.将数据分成以下组:第1组,第2组,第3组,第4组,第5组,得到如图所示的频率分布直方图.

(Ⅰ)求a的值;

(Ⅱ)现采用分层抽样的方法,从第3,4,5组中随机抽取6名学生座谈,求每组抽取的学生人数;

(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计随机抽取学生所得测试分数的平均值在第几组(只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于空间直角坐标系中的一点,有下列说法:

①点到坐标原点的距离为

的中点坐标为

③点关于轴对称的点的坐标为

④点关于坐标原点对称的点的坐标为

⑤点关于坐标平面对称的点的坐标为.

其中正确的个数是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司2016年前三个月的利润(单位:百万元)如下:

月份

利润

(1)求利润关于月份的线性回归方程;

(2)试用(1)中求得的回归方程预测月和月的利润;

(3)试用(1)中求得的回归方程预测该公司2016年从几月份开始利润超过万?

相关公式: =.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司2016年前三个月的利润(单位:百万元)如下:

月份

利润

(1)求利润关于月份的线性回归方程;

(2)试用(1)中求得的回归方程预测月和月的利润;

(3)试用(1)中求得的回归方程预测该公司2016年从几月份开始利润超过万?

相关公式: ,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了变废为宝,节约资源,新上了一个从生活垃圾中提炼生物柴油的项目.经测算该项目月处理成本(元)与月处理量(吨)之间的函数关系可以近似地表示为:

,且每处理一吨生活垃圾,可得到能利用的生物柴油价值为200元,若该项目不获利,政府将给予补贴.

(1)当时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损?

(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx=x﹣a2lnx,aR

I若x=e是y=fx的极值点,求实数a的值;

若函数y=fx﹣4e2只有一个零点,求实数a的取值范围 .

查看答案和解析>>

同步练习册答案