精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,直线的普通方程为,曲线的参数方程为为参数),以为极点,轴的正半轴为极轴建立极坐标系.

(Ⅰ)求直线的参数方程和极坐标方程;

(Ⅱ)设直线与曲线相交于两点,求的值.

【答案】(Ⅰ) 直线的参数方程为(为参数) 极坐标方程为() (Ⅱ)5

【解析】

(Ⅰ) 直线的普通方程为,可以确定直线过原点,且倾斜角为,这样可以直接写出参数方程和极坐标方程;

(Ⅱ)利用,把曲线的参数方程化为普通方程,然后把直线的参数方程代入曲线的普通方程中,利用根与系数的关系和参数的意义,可以求出的值.

解:(Ⅰ)直线的参数方程为(为参数)

极坐标方程为()

(Ⅱ)曲线的普通方程为

将直线的参数方程代入曲线中,得

设点对应的参数分别是,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数对任意,都有,且时,.

(1)求证是奇函数;

(2)求上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校研究性学习小组调查学生使用智能手机对学习成绩的影响,询问了 30 名同学,得到如下的 列联表:

使用智能手机

不使用智能手机

总计

学习成绩优秀

4

8

12

学习成绩不优秀

16

2

18

总计

20

10

30

(Ⅰ)根据以上列联表判断,能否在犯错误的概率不超过 0.005 的前提下认为使用智能手机对学习成绩有影响?

(Ⅱ)从使用学习成绩优秀的 12 名同学中,随机抽取 2 名同学,求抽到不使用智能手机的人数的分布列及数学期望.智能手机的 20 名同学中,按分层抽样的方法选出 5 名同学,求所抽取的 5 名同学中“学习成绩优秀”和“学习成绩不优秀”的人数;

(Ⅲ)从问题(Ⅱ)中倍抽取的 5 名同学,再随机抽取 3 名同学,试求抽取 3 名同学中恰有 2 名同学为“学习成绩不优秀”的概率.

参考公式:其中

参考数据:

0.05

0,。025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究机构为了了解各年龄层对高考改革方案的关注程度,随机选取了200名年龄在内的市民进行了调查,并将结果绘制成如图所示的频率分布直方图(分第一~五组区间分别为).

(1)求选取的市民年龄在内的人数;

(2)若从第3,4组用分层抽样的方法选取5名市民进行座谈,再从中选取2人在座谈会中作重点发言,求作重点发言的市民中至少有一人的年龄在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数().

(Ⅰ)若处的切线过点,求的值;

(Ⅱ)若恰有两个极值点().

(ⅰ)求的取值范围;

(ⅱ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒子中装有标号为1,2,3,4,55张标签,随机地依次选取两张标签,根据下列条件求两张标签上的数字为相等整数的概率;

1)标签的选取是不放回的;

2)标签的选取是有放回的.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某班级50名学生订阅数学、语文、英语学习资料的情况,其中A表示订阅数学学习资料的学生,B表示订阅语文学习资料的学生,C表示订阅英语学习资料的学生

1)从这个班任意选择一名学生,用自然语言描述1458各区域所代表的事件;

2)用ABC表示下列事件:

①恰好订阅一种学习资料;

②没有订阅任何学习资料.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,抛物线的焦点为,抛物线两点,在抛物线的准线上的射影分别为.

(1)如图,若点在线段上,过的平行线与抛物线准线交于,证明:的中点;

(2)如图,若的面积是的面积的两倍,求中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成两组,每组100只,其中组小鼠给服甲离子溶液,组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:

为事件:“乙离子残留在体内的百分比不低于”,根据直方图得到的估计值为.

(1)求乙离子残留百分比直方图中的值;

(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).

查看答案和解析>>

同步练习册答案