【题目】已知函数对任意,都有,且时,.
(1)求证是奇函数;
(2)求在上的最大值和最小值.
【答案】(1) 证明见解析,(2)6,-6.
【解析】
(1)根据任意,都有,利用赋值法构造奇偶性判断的定义即可证明;(2)根据已知利用赋值法构造单调性的定义判断后,即可求在上的最大值和最小值.
(1)证明 令x=y=0,知f(0)=0;再令y=-x,则f(0)=f(x)+f(-x)=0,所以f(x)为奇函数.
(2)解 任取x1<x2,则x2-x1>0,所以f(x2-x1)=f[x2+(-x1)]=f(x2)+f(-x1)=f(x2)-f(x1)<0.
所以f(x)为减函数.
而f(3)=f(2+1)=f(2)+f(1)=3f(1)=-6,f(-3)=-f(3)=6.
所以f(x)max=f(-3)=6,f(x)min=f(3)=-6.
科目:高中数学 来源: 题型:
【题目】将函数的图象,向右平移个单位长度,再把纵坐标伸长到原来的2倍,得到函数,则下列说法正确的是( )
A. 函数的最小正周期为 B. 函数在区间上单调递增
C. 函数在区间上的最小值为 D. 是函数的一条对称轴
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的参数方程为(为参数).以直角坐标系的原点为极点,轴的正半轴为极轴建立坐标系,曲线的极坐标方程为.
(1)求的普通方程和的直角坐标方程;
(2)若过点的直线与交于,两点,与交于,两点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的有( )
(1)很小的实数可以构成集合;
(2)集合与集合是同一个集合;
(3) 这些数组成的集合有5个元素;
(4)任何集合至少有两个子集.
A.0个B.1个C.2个D.3个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)求函数的最小值;
(2)当时,记函数的所有单调递增区间的长度为,所有单调递减区间的长度为,证明:.(注:区间长度指该区间在轴上所占位置的长度,与区间的开闭无关.)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的定义域为,对于任意的,都有且当时,,若.
(1)求证:为奇函数;
(2)求证: 是上的减函数;
(3)求函数在区间[-2,4]上的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的普通方程为,曲线的参数方程为(为参数),以为极点,轴的正半轴为极轴建立极坐标系.
(Ⅰ)求直线的参数方程和极坐标方程;
(Ⅱ)设直线与曲线相交于两点,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com