精英家教网 > 高中数学 > 题目详情
13.已知a、b、c均为正数,若a+b+c,b+c-a,c+a-b,a+b-c依次成等比数列,且公比为q,则q3+q2+q的值为(  )
A.0B.1C.3D.不能确定

分析 由a+b+c,b+c-a,c+a-b,a+b-c依次成等比数列,公比为q,可设a+b+c=x,由公比q,利用等比数列的通项公式表示出其余三项,三个等式相加后,由x不等于0消去x即可得到所求式子的值.

解答 解:设x=a+b+c,则b+c-a=xq,c+a-b=xq2,a+b-c=xq3
∴xq+xq2+xq3=x(x≠0),
∴q3+q2+q=1.
故选:B.

点评 此题考查学生灵活运用等比数列的通项公式化简求值,掌握等比数列的性质,是一道基础题.解本题的关键是设a+b+c=x,利用等比数列的通项公式表示出其余各项.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=x3+(1-a)x2-a(a+2)x(a∈R)在区间(-2,2)不单调,则a的取值范围是$(-8,-\frac{1}{2})∪(-\frac{1}{2},4)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{1-{a}^{2}}$=1,点P到两定点A(-1,0)、B(1,0)的距离之比为$\sqrt{2}$,点B到直线PA的距离为1.
(1)求直线PB的方程.
(2)求证:直线PB与椭圆C相切.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知点P(1,1)到直线l:y=3x+b(b>0)的距离为$\frac{{2\sqrt{10}}}{5}$.数列{an}的首项a1=1,且点列(an,an+1)n∈N*均在直线l上.
(Ⅰ)求b的值;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)求数列{nan}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.值域是(0,+∞)的函数是(  )
A.y=x2-x+1B.y=($\frac{1}{3}$)1-xC.y=3${\;}^{\frac{1}{2-x}}$+1D.y=log2x2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求函数f(x)=$\frac{x}{{x}^{2}+3}$(x>0)的最大值以及取得最大值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=sin(2ωx+$\frac{π}{6}$)(ω>0),直线x=x1,x=x2是y=f(x)图象的任意两条对称轴,且|x1-x2|的最小值为$\frac{π}{2}$.
(1)求函数f(x)的单调递增区间;
(2)若关于x的方程$2{[{f(\frac{x}{2}+\frac{π}{6})}]^2}$+mcosx+2=0在x∈(0,$\frac{π}{2}$)有实数解,求实数m的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.f(x)=$\frac{1}{3}$x3-4x+4的极大值点为x=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.将一张坐标纸折叠一次,使点(0,2)与点(4,0)重合,且点(9,5)与点(m,n)重合,则m+n的值是10.

查看答案和解析>>

同步练习册答案