精英家教网 > 高中数学 > 题目详情
9.已知动点P与两定点A(-2,0),B(2,0)连线的斜率之积为-$\frac{1}{4}$.
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)若过点F(-$\sqrt{3}$,0)的直线l与轨迹C交于M、N两点,且轨迹C上存在点E使得四边形OMEN(O为坐标原点)为平行四边形,求直线l的方程.

分析 (Ⅰ)设出P的坐标,由${k}_{PA}•{k}_{PB}=-\frac{1}{4}$化简整理可得曲线C的方程;
(Ⅱ)设M(x1,y1),N(x2,y2),由题意知l的斜率一定不为0,设l:x=my-$\sqrt{3}$,代入椭圆方程整理得(m2+4)y2-$2\sqrt{3}$my-1=0,假设存在点E,使得四边形OMEN为平行四边形,其充要条件为$\overrightarrow{OE}=\overrightarrow{OM}+\overrightarrow{ON}$,则点E的坐标为(x1+x2,y1+y2).由此利用韦达定理结合已知条件能求出直线l的方程.

解答 解:(Ⅰ)设P(x,y),由${k}_{PA}•{k}_{PB}=-\frac{1}{4}$,得
$\frac{y}{x+2}•\frac{y}{x-2}=-\frac{1}{4}$,整理得:$\frac{{x}^{2}}{4}+{y}^{2}=1$.
∴曲线C的方程为$\frac{{x}^{2}}{4}+{y}^{2}=1$;
(Ⅱ)设M(x1,y1),N(x2,y2),由题意知l的斜率一定不为0,
故不妨设l:x=my-$\sqrt{3}$,代入椭圆方程整理得(m2+4)y2-$2\sqrt{3}$my-1=0,
△=12m2+4m2+16=16m2+16>0,
则${y}_{1}+{y}_{2}=\frac{2\sqrt{3}m}{{m}^{2}+4},{y}_{1}{y}_{2}=-\frac{1}{{m}^{2}+4}$,①
假设存在点E,使得四边形OMEN为平行四边形,
其充要条件为$\overrightarrow{OE}=\overrightarrow{OM}+\overrightarrow{ON}$,则点E的坐标为(x1+x2,y1+y2).
由点E在椭圆上,即$\frac{({x}_{1}+{x}_{2})^{2}}{4}+({y}_{1}+{y}_{2})^{2}=1$,
整理得${{x}_{1}}^{2}+{{x}_{2}}^{2}+4{{y}_{1}}^{2}+4{{y}_{2}}^{2}+2{x}_{1}{x}_{2}+8{y}_{1}{y}_{2}-4=0$.
又M,N在椭圆上,即${{x}_{1}}^{2}+4{{y}_{1}}^{2}=4,{{x}_{2}}^{2}+4{{y}_{2}}^{2}=4$,
故x1x2+4y1y2=-2,②
又${x}_{1}{x}_{2}=(m{y}_{1}-\sqrt{3})(m{y}_{2}-\sqrt{3})$=${m}^{2}{y}_{1}{y}_{2}-\sqrt{3}m({y}_{1}+{y}_{2})+3$,
将①②代入上式解得m=±$\frac{2\sqrt{5}}{5}$
即直线l的方程是:x=±$\frac{2\sqrt{5}}{5}$y+1,
即$\sqrt{5}x±2y-\sqrt{5}=0$.

点评 本题考查点的轨迹方程的求法,考查满足条件的点是否存在的判断与直线方程的求法,体现了数学转化思想方法,注意函数与方程思想的合理运用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知二次函数f(x)满足f(0)=1,且f(x+1)-f(x)=2x.
(1)求f(x)的解析式;
(2)若g(x)=f(logax)(a>0且a≠1),$x∈[{a,\;\;\frac{1}{a}}]$,试求g(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知两点P(0,0),Q(3,2),试判断P、Q是否在下列直线的同侧(1)2x+3y=4;(2)-2x-3y+3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求下列函数的单调区间:(1)y=1+sinx,x∈R;(2)y=-cosx,x∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若y=(3k-1)x+k是定义域为R的减函数,则k的取值范围(-∞,$\frac{1}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知sinα+cosα=-$\frac{1}{5}$,且π<α<2π,则:
(1)sinα•cosα=-$\frac{12}{25}$;(2)sinα-cosα=-$\frac{7}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=$\left\{\begin{array}{l}{sinx,x≥0}\\{x+2,x<0}\end{array}\right.$则不等式f(x)$>\frac{1}{2}$的解集是{x|-$\frac{3}{2}$<x<0或2kπ+$\frac{π}{6}$<x<2kπ+$\frac{5π}{6}$,k∈N}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.2015年6号台风“红霞”5月12日上午8点在日本本州和歌由县西南东海东部海面登陆,某渔船丙由于发动机故障急需救援,如图,正在海上A处执行任务的渔政船甲和在B处执行任务的渔政船乙,同时收到同一片海域上渔船丙的求救信号,此时渔船丙在渔政船甲的南偏东40°方向距渔政船甲140km的C处,渔政船乙在渔政船甲的南偏东西20°方向的B处,两艘渔政船协调后立即让渔政船甲向渔船丙所在位置C处沿直线AC航行前去救援,渔政船乙仍留在B处执行任务,渔政船甲航行60km到达D处时,收到新的指令另有重要任务必须执行,于是立即通知在B处执行任务的渔政船乙前去救援渔船丙(渔政船乙沿着直线BC航行前去救援渔船丙),此时B、D两处相距84km,问渔政船乙要航行多少距离才能到达渔船所在的位置C处实施营救.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=x2-3在区间(1,2)内的零点的近似值(精确度0.1)是.
A.1.55B.1.65C.1.75D.1.85

查看答案和解析>>

同步练习册答案