如图,在四棱锥中,底面为直角梯形,∥,,平面⊥底面,为的中点,是棱上的点,,,.
(Ⅰ)求证:平面⊥平面;
(Ⅱ)若为棱的中点,求异面直线与所成角的余弦值.
(Ⅰ)详见解析;(Ⅱ)异面直线与所成角的余弦值为
解析试题分析:(Ⅰ)证两平面垂直,先证一个面内的一条直线垂直另一个平面.
在本题中可证得:平面,也可证:⊥平面.
(Ⅱ)法一、由(Ⅰ)题可得:直线、、两两垂直,故可以为原点建立空间直角坐标系,利用空间向量求异面直线与所成角的余弦值.
法二、可过作的平行线,从而将异面直线与所成角转化相交直线所成的角.
试题解析:(Ⅰ)法一:为的中点,
又即
∴四边形为平行四边形,
即
又∵平面平面 且平面平面
平面
又平面,∴平面平面 6分
法二:,,为的中点,∴且.
∴四边形为平行四边形,∴
∵ ∴即
∵ ∴
∵ ,
∴⊥平面.
∵ 平面,
∴平面⊥平面. 6分
(Ⅱ)∵,为的中点,
∴.
∵平面平面 且平面平面
∴平面. 8分
(注:不证明PQ⊥平面ABCD直接建系扣
科目:高中数学 来源: 题型:解答题
如图所示,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.
(1)证明:B1C1⊥CE;
(2)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为.求线段AM的长.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.
(1) 证明:BD⊥平面PAC;
(2) 若AD=2,当PC与平面ABCD所成角的正切值为时,求四棱锥P-ABCD的外接球表面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
正方形与梯形所在平面互相垂直,,,点在线段上且不与重合。
(Ⅰ)当点M是EC中点时,求证:BM//平面ADEF;
(Ⅱ)当平面BDM与平面ABF所成锐二面角的余弦值为时,求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥A-BCDE中,侧面∆ADE是等边三角形,底面BCDE是等腰梯形,且CD∥BE,DE=2,CD=4, ,M是DE的中点,F是AC的中点,且AC=4,
求证:(1)平面ADE⊥平面BCD;
(2)FB∥平面ADE.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com