试题分析:(1)设出与直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628138579.png)
平行的直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628247621.png)
,并与椭圆方程联立消去
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628263310.png)
(或
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628091266.png)
)得关于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628091266.png)
的一元二次方程,令判别式为0解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628309267.png)
的值(应为2个值)。此时直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628247621.png)
与椭圆相切,分析可知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628309267.png)
取负值时两直线距离最大,此距离即为椭圆上的点到直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628138579.png)
的最大距离。(2)①当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628153386.png)
时,切线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628403280.png)
的方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628419323.png)
,代入椭圆方程可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628185423.png)
坐标。②分析可知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628450454.png)
,由①可知当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628153386.png)
时
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628481571.png)
。当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628497448.png)
时,切线斜率存在设切线方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628528664.png)
,根据切线与圆相切即圆心到直线的距离等于半径可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628559312.png)
与
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628575337.png)
间的关系式。再将切线方程与椭圆方程联立消去
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628263310.png)
(或
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628091266.png)
)得关于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628091266.png)
的一元二次方程,可知判别式应大于0且可得根与系数的关系,根据弦长公式可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628637419.png)
,根据
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628559312.png)
与
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628575337.png)
间的关系式可消去一个量,可用基本不等式求最值。
(1)设直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628247621.png)
,带入椭圆方程
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628699636.png)
得,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628715921.png)
得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628746452.png)
,(4分)
由图形得直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628762657.png)
与直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628138579.png)
的距离为椭圆G上的点到直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628138579.png)
的最大距离为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240526288091191.png)
(6分)
(2)①由题意知,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628450454.png)
.
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628153386.png)
时,切线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628403280.png)
的方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628419323.png)
,点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628185423.png)
的坐标分别为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240526282161108.png)
,此时
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628481571.png)
.(8分)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628980395.png)
时,同理可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628481571.png)
.(9分)
②当|m|>1时,设切线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628403280.png)
的方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628528664.png)
.
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240526291361147.png)
得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240526291521181.png)
.(10分)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628185423.png)
两点的坐标分别为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052629183782.png)
,则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240526292141243.png)
.
又由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628403280.png)
与圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052629245550.png)
相切,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052629277725.png)
,即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052629292612.png)
.(11分)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240526293235846.png)
.(12分)
由于当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052629339405.png)
时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628481571.png)
,所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052629386966.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052629401865.png)
.
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240526294171462.png)
,(13分)
且当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052629448510.png)
时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052629464524.png)
,所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052628637419.png)
的最大值为2.