精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数, ).以原点为极点,以轴正半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系.设曲线的极坐标方程为.

(Ⅰ)设为曲线上任意一点,求的取值范围;

(Ⅱ)若直线与曲线交于两点 ,求的最小值.

【答案】(1)(2)4.

【解析】试题分析: (1)将曲线C的极坐标方程化为直角坐标方程,将化为关于 的二次函数,求出范围; (2)将直线的参数方程代入曲线C的直角坐标方程中,由直线参数方程的几何意义求出 表达式,求出最小值.

试题解析:(1)将曲线的极坐标方程化为直角坐标方程为

为曲线上任意一点,∴

的取值范围是

(2)将代入,整理,得

,设方程的两根分别为

所以

时, 取得最小值4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆,过上一点的切线的方程为.

(Ⅰ)求椭圆的方程;

(Ⅱ)设过点且斜率不为的直线交椭圆于两点,试问轴上是否存在点,使得?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左顶点为A,右焦点为F,过点F的直线交椭圆于BC两点.

(1)求该椭圆的离心率;

(2)设直线ABAC分别与直线x=4交于点MN,问:x轴上是否存在定点P使得MPNP?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某机械厂今年进行了五次技能考核,其中甲、乙两名技术骨干得分的平均分相等,成绩统计情况如茎叶图所示(其中09的某个整数)

1)若该厂决定从甲乙两人中选派一人去参加技能培训,从成绩稳定性角度考虑,你认为谁去比较合适?

2)若从甲的成绩中任取两次成绩作进一步分析,在抽取的两次成绩中,求至少有一次成绩在(90100]之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数. 

(Ⅰ)若,证明:函数上的减函数;

(Ⅱ)若曲线在点处的切线与直线平行,求的值;

(Ⅲ)若,证明: (其中…是自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x2+bx+c,若f(﹣3)=f(1),f(0)=﹣3.
(1)求函数f(x)的解析式;
(2)若函数g(x)= 画出函数g(x)图象;
(3)求函数g(x)在[﹣3,1]的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆与双曲线有相同的焦点,椭圆的一个短轴端点为,直线与双曲线的一条渐近线平行,若椭圆于双曲线的离心率分别为,则的最小值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中, // , 点边的中点, 将△沿折起,使平面⊥平面,连接, , , 得到如

图所示的空间几何体.

(Ⅰ)求证: ⊥平面

(Ⅱ)若,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥的底面为平行四边形,且,, 分别为中点,过作平面分别与线段相交于点.

(Ⅰ)在图中作出平面使面 (不要求证明);

(II)若,在(Ⅰ)的条件下求多面体的体积.

查看答案和解析>>

同步练习册答案