精英家教网 > 高中数学 > 题目详情

【题目】下列有关命题的说法正确的是( )

A. 命题“若,则”的逆命题为真命题;

B. 命题“若,则”的否命题为真命题;

C. 命题“”为真命题,则命题pq均为真命题;

D. 命题“若,则”的逆否命题为假命题.

【答案】B

【解析】

A.写出命题的逆命题判断真假即可;B. 命题,则的否命题为,则是真命题;C. 命题为真命题,则命题pq至少有一个真命题即可;D原命题和逆否命题真假性相同,故判断原命题的真假即可.

A命题,则的逆命题为若,则是假命题,故A错误;B. 命题,则的否命题为,则是真命题;C. 命题为真命题,则命题pq至少有一个真命题即可;D. 命题,则是真命题故逆否命题也是真命题。

故答案为:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且Sn=n2+2n;数列{bn}是公比大于1的等比数列,且满足b1+b4=9,b2b3=8.
(Ⅰ)分别求数列{an},{bn}的通项公式;
(Ⅱ)若cn=(﹣1)nSn+anbn , 求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=(x﹣a)2lnx,a∈R
(1)证明:函数f(x)=(x﹣a)2lnx,a∈R的图象恒经过一个定点;
(2)若函数h(x)= f′(x)在(0,+∞)有定义,且不等式h(x)≤0在(0,+∞)上有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=(x﹣a)2lnx,a∈R
(1)证明:函数f(x)=(x﹣a)2lnx,a∈R的图象恒经过一个定点;
(2)若函数h(x)= f′(x)在(0,+∞)有定义,且不等式h(x)≤0在(0,+∞)上有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数列A:a1a2a3,…,定义A的“差数列” A:,…

(I)若数列A:a1a2a3,…的通项公式,写出A的前3项;

(II)试给出一个数列A:a1a2a3,…,使得A是等差数列;

(III)若数列A:a1a2a3,…的差数列的差数列 A)的所有项都等于1,且==0,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知满足为常数),若最大值为3,则=( )

A. 2 B. 1 C. 4 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn=3n2+8n,{bn}是等差数列,且an=bn+bn+1
(1)求数列{bn}的通项公式;
(2)令cn= ,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出如下四个命题: ①若“p且q”为假命题,则p、q均为假命题;

②命题“若,则 ”的否命题为“若,则”;

③命题“ ”的否定是“”;

④“ ”是“ ”的充分必要条件. 其中正确的命题个数是( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数处取得极大值或极小值,则称为函数的极值点.

设函数

(1)若有两个极值点且满足的值及的取值范围;

(2)若处的切线与的图象有且只有一个公共点,求的值;

(3),且对满足“函数的图象总有三个交点”的任意实数,都有成立,求满足的条件

查看答案和解析>>

同步练习册答案