分析 设y=$\sqrt{-{x}^{2}-4x-3}$,可得y2=-x2-4x-3(y≥0),表示以(-2,0)为圆心,1为半径的圆的上半圆,利用直线与圆相切,求出m,即可求出实数m的取值范围.
解答 解:由题意,设y=$\sqrt{-{x}^{2}-4x-3}$,可得y2=-x2-4x-3(y≥0)
表示以(-2,0)为圆心,1为半径的圆的上半圆,如图所示
y=x+2-m,切线斜率等于1,圆心到直线的距离为$\frac{|m|}{\sqrt{2}}$=1,∴m=-$\sqrt{2}$,
∵不等式$\sqrt{-{x}^{2}-4x-3}$≤x+2-m,对[-3,-1]恒成立,
∴m$≤-\sqrt{2}$.
故答案为:m$≤-\sqrt{2}$.
点评 本题考查直线与圆的位置关系,考查点到直线的距离公式的运用,考查数形结合的数学思想,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | S6<0 | B. | S7<0 | C. | S12<0 | D. | S13<0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com