精英家教网 > 高中数学 > 题目详情
已知P为椭圆
x2
25
+
y2
16
=1
上的一点,M,N分别为圆(x+3)2+y2=1和圆(x-3)2+y2=4上的点,则|PM|+|PN|的最小值为(  )
A、5B、7C、13D、15
分析:由题意可得:椭圆
x2
25
+
y2
16
=1
的焦点分别是两圆(x+3)2+y2=1和(x-3)2+y2=4的圆心,再结合椭圆的定义与圆的有关性质可得答案.
解答:解:依题意可得,椭圆
x2
25
+
y2
16
=1
的焦点分别是两圆(x+3)2+y2=1和(x-3)2+y2=4的圆心,
所以根据椭圆的定义可得:(|PM|+|PN|)min=2×5-1-2=7,
故选B.
点评:本题考查圆的性质及其应用,以及椭圆的定义,解题时要认真审题,仔细解答,注意公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知P为椭圆
x2
25
+
y2
9
=1
上一点,F1,F2是椭圆的两个焦点,∠F1PF2=60°,求△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P为椭圆
x2
25
+
y2
9
=1
上一点,F1,F2是椭圆的两个焦点,∠F1PF2=60°,则△F1PF2的面积S=
3
3
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P为椭圆
x2
25
+
y2
16
=1
上一点,F为右焦点,若|
PF
|=6
,且点M满足
OM
=
1
2
(
OP
+
OF
)
(其中O为坐标原点),则|
OM
|
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P为椭圆
x2
25
+
y2
9
=1
上一点,F1,F2为椭圆的两个焦点,且|PF1|=3,则|PF2|=(  )
A、2B、5C、7D、8

查看答案和解析>>

同步练习册答案