【题目】某射手每次射击击中目标的概率是,且各次射击的结果互不影响,假设这名射手射击3次.
(1)求恰有2次击中目标的概率;
(2)现在对射手的3次射击进行计分:每击中目标1次得1分,未击中目标得0分;若仅有2次连续击中,则额外加1分;若3次全击中,则额外加3分.记为射手射击3次后的总得分,求的概率分布列与数学期望.
科目:高中数学 来源: 题型:
【题目】2012年12月18日,作为全国首批开展空气质量新标准监测的74个城市之一,郑州市正式发布数据.资料表明,近几年来,郑州市雾霾治理取得了很大成效,空气质量与前几年相比得到了很大改善.郑州市设有9个监测站点监测空气质量指数(),其中在轻度污染区、中度污染区、重度污染区分别设有2,5,2个监测站点,以9个站点测得的的平均值为依据,播报我市的空气质量.
(Ⅰ)若某日播报的为118,已知轻度污染区的平均值为74,中度污染区的平均值为114,求重度污染区的平均值;
(Ⅱ)如图是2018年11月的30天中的分布,11月份仅有一天在内.
组数 | 分组 | 天数 |
第一组 | 3 | |
第二组 | 4 | |
第三组 | 4 | |
第四组 | 6 | |
第五组 | 5 | |
第六组 | 4 | |
第七组 | 3 | |
第八组 | 1 |
①郑州市某中学利用每周日的时间进行社会实践活动,以公布的为标准,如果小于180,则去进行社会实践活动.以统计数据中的频率为概率,求该校周日进行社会实践活动的概率;
②在“创建文明城市”活动中,验收小组把郑州市的空气质量作为一个评价指标,从当月的空气质量监测数据中抽取3天的数据进行评价,设抽取到不小于180的天数为,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是由正整数组成的无穷数列,对任意,满足如下两个条件:①是的倍数;②.
(1)若,,写出满足条件的所有的值;
(2)求证:当时,;
(3)求所有可能取值中的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知点是轴与圆的一个公共点(异于原点),抛物线的准线为,上横坐标为的点到的距离等于.
(1)求的方程;
(2)直线与圆相切且与相交于,两点,若的面积为4,求的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1所示,在中, , , , 为的平分线,点在线段上, .如图2所示,将沿折起,使得平面平面,连结,设点是的中点.
图1 图2
(1)求证: 平面;
(2)在图2中,若平面,其中为直线与平面的交点,求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,那么下列结论中错误的是( )
A. 若是的极小值点,则在区间上单调递减
B. ,使
C. 函数的图像可以是中心对称图形
D. 若是的极值点,则
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆外的有一点,过点作直线.
(1)当直线过圆心时,求直线的方程;
(2)当直线与圆相切时,求直线的方程;
(3)当直线的倾斜角为时,求直线被圆所截得的弦长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com