精英家教网 > 高中数学 > 题目详情
在奥运会射箭决赛中,参赛号码为1~4号的四名射箭运动员参加射箭比赛.
(Ⅰ)通过抽签将他们安排到1~4号靶位,试求恰有两名运动员所抽靶位号与其参赛号码相同的概率;
(Ⅱ)记1号、2号射箭运动员射箭的环数为所有取值为0,1,2,3...,10)的概率分别为.根据教练员提供的资料,其概率分布如下表:

0
1
2
3
4
5
6
7
8
9
10

0
0
0
0
0.06
0.04
0.06
0.3
0.2
0.3
0.04

0
0
0
0
0.04
0.05
0.05
0.2
0.32
0.32
0.02
①1,2号运动员各射箭一次,求两人中至少有一人命中9环的概率;
②判断1号,2号射箭运动员谁射箭的水平高?并说明理由.
(Ⅰ)(Ⅱ),2号射箭运动员的射箭水平高.理由见解析。
本试题主要是考查了古典概型概率的运算,以及随机变量的分布列的求解和期望值的运用。
(1)4名运动员中任取两名,其靶位号与参赛号相同,有6种方法,另2名运动员靶位号与参赛号均不相同的方法有1种,所以恰有一名运动员所抽靶位号与参赛号相同的概率为1/4
(2)由表可知,两人各射击一次,都未击中9环的概率为P=(1-0.3)(1-0.32)=0.476至少有一人命中9环的概率为p=1-0.476=0.524,那么利用各个取值概率值表示得到期望值,并比较大小得到水平高低问题。
解:(Ⅰ)从4名运动员中任取两名,其靶位号与参赛号相同,有种方法,另2名运动员靶位号与参赛号均不相同的方法有1种,所以恰有一名运动员所抽靶位号与参赛号相同的概率为
(Ⅱ)①由表可知,两人各射击一次,都未击中9环的概率为
∴至少有一人命中9环的概率为


所以2号射箭运动员的射箭水平高.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某地区因干旱缺水,政府向市民宣传节约用水,并进行广泛动员 三个月后,统计部门在一个小区随机抽取了户家庭,分别调查了他们在政府动员前后三个月的月平均用水量(单位:吨),将所得数据分组,画出频率分布直方图(如图所示)

动员前                                 动员后
(Ⅰ)已知该小区共有居民户,在政府进行节水动员前平均每月用水量是吨,请估计该小区在政府动员后比动员前平均每月节约用水多少吨;
(Ⅱ)为了解动员前后市民的节水情况,媒体计划在上述家庭中,从政府动员前月均用水量在范围内的家庭中选出户作为采访对象,其中在内的抽到户,求的分布列和期望

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

有一种游戏规则如下:口袋里共装有4个红球和4个黄球,一次摸出4个,若颜色都相同,则
得100分;若有3个球颜色相同,另一个不同,则得50分,其他情况不得分. 小张摸一次得分的期望是_____ .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为迎接我校110周年校庆,校友会于日前举办了一次募捐爱心演出,有1000 人参加,每人一张门票,每张100元. 在演出过程中穿插抽奖活动.第一轮抽奖从这1000张票根中随机抽取10张,其持有者获得价值1000元的奖品,并参加第二轮抽奖活动.第二轮抽奖由第一轮获奖者独立操作按钮,电脑随机产生两个数,满足电脑显示“中奖”,且抽奖者获得9000元奖金;否则电脑显示“谢谢”,则不中奖.
(1)已知校友甲在第一轮抽奖中被抽中,求校友甲在第二轮抽奖中获奖的概率;
(2)若校友乙参加了此次活动,求校友乙参加此次活动收益的期望;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题10分)
在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从此10张券中任抽2张,求:(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值(元)的概率分布列和期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

QQ先生的鱼缸中有7条鱼,其中6条青鱼和1条黑鱼,计划从当天开始,每天中午从该鱼缸中抓出1条鱼(每条鱼被抓到的概率相同)并吃掉.若黑鱼未被抓出,则它每晚要吃掉1条青鱼(规定青鱼不吃鱼).
(Ⅰ)求这7条鱼中至少有6条被QQ先生吃掉的概率;
(Ⅱ)以表示这7条鱼中被QQ先生吃掉的鱼的条数,求的分布列及其数学期望

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)在第9届校园文化艺术节棋类比赛项目报名过程中,我校高二(2)班共有16名男生和14名女生预报名参加,调查发现,男、女选手中分别有10人和6人会围棋.
(I)根据以上数据完成以下22列联表:
 
会围棋
不会围棋
总计

 
 
 

 
 
 
总计
 
 
30
并回答能否在犯错的概率不超过0.10的前提下认为性别与会围棋有关?
参考公式:其中n=a+b+c+d
参考数据:

0.40
0.25
0.10
0.010

0.708
1.323
2.706
6.635
(Ⅱ)若从会围棋的选手中随机抽取3人成立该班围棋代表队,则该代表队中既有男又
有女的概率是多少?
(Ⅲ)若从14名女棋手中随机抽取2人参加棋类比赛,记会围棋的人数为,求的期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
某地区对12岁儿童瞬时记忆能力进行调查.瞬时记忆能力包括听觉记忆能力与视觉记忆能力.某班学生共有40人,下表为该班学生瞬时记忆能力的调查结果.例如表中听觉记忆能力为中等,且视觉记忆能力偏高的学生为3人.
    视觉        
视觉记忆能力
偏低
中等
偏高
超常
听觉
记忆
能力
偏低
0
7
5
1
中等
1
8
3

偏高
2

0
1
超常
0
2
1
1
由于部分数据丢失,只知道从这40位学生中随机抽取一个,视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的概率为
(I)试确定的值;
(II)从40人中任意抽取3人,求其中至少有一位具有听觉记忆能力或视觉记忆能力超常的学生的概率;
(III)从40人中任意抽取3人,设具有听觉记忆能力或视觉记忆能力偏高或超常的学生人数为,求随机变量的数学期望

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.若h~B(2, p),且,则(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案