【题目】已知集合A={x||x﹣a|≤3,x∈R},B={x|x2﹣3x﹣4>0,x∈R}.
(1)若a=1,求A∩B;
(2)若A∪B=R,求实数a的取值范围.
【答案】
(1)解:当a=1时,A={﹣2≤x≤4},
在集合B中,由x2﹣3x﹣4>0可得x<﹣1或x>4
所以A∩B={x|﹣2≤x<﹣1}
(2)解:集合A中,由|x﹣a|≤3可得﹣3≤x﹣a≤3,即a﹣3≤x≤a+3,
由A∪B=R可得,a﹣3≤﹣1且a+3≥4,
所以1≤a≤2
【解析】(1)当a=1时,A={﹣2≤x≤4},再求出集合B,由此能求出A∩B.(2)集合A中,a﹣3≤x≤a+3,由A∪B=R可得,a﹣3≤﹣1且a+3≥4,由此能求出实数a的范围.
【考点精析】掌握集合的并集运算和集合的交集运算是解答本题的根本,需要知道并集的性质:(1)AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A;(2)若A∪B=B,则AB,反之也成立;交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立.
科目:高中数学 来源: 题型:
【题目】在四棱锥P﹣ABCD中,AD∥BC,AD=AB=DC=BC=1,E是PC的中点,面PAC⊥面ABCD.
(1)证明:ED∥面PAB;
(2)若PC=2,PA=,求二面角A﹣PC﹣D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a>0且a≠1,函数 ,
(1)求函数f(x)的定义域;
(2)将函数y=f(x)的图象向右平移两个单位后得到函数y=g(x)的图象,若实数x满足g(x)≥0,求x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设, .
(1)若,求的单调区间;
(2)讨论在区间上的极值点个数;
(3)是否存在,使得在区间上与轴相切?若存在,求出所有的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AD∥BC,AB⊥AD,BC= ,AB=1,BD=PA=2,M 为PD的中点.
(1)求异面直线BD与PC所成角的余弦值;
(2)求二面角A﹣MC﹣D的平面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com