精英家教网 > 高中数学 > 题目详情

【题目】如图,在多面体,平面,四边形为正方形,四边形为梯形,且,,,.

(1)求直线与平面所成角的正弦值;

(2)线段上是否存在点,使得直线平面?若存在,求的值:若不存在,请说明理由.

【答案】(1) (2) .

【解析】

建立适当的空间直角坐标系.

(1)求出平面的法向量,利用空间向量夹角公式可以求出直线与平面所成角的正弦值;

(2)求出平面的法向量,结合线面平行的性质,空间向量共线的性质,如果求出的值,也就证明出存在线段上是否存在点,使得直线平面,反之就不存在.

为空间直角坐标系的原点, 向量所在的直线为轴.如下所示:.

(1)平面的法向量为,.

.

直线与平面所成角为,所以有;

(2)假设线段上是存在点,使得直线平面.,因此,所以的坐标为:..

设平面的法向量为,,

,

因为直线平面,所以有,即.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数.

(1)若不等式解集为,求实数的值;

(2)在(1)的条件下,若不等式解集非空,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,棱锥PABCD的底面ABCD是矩形,PA⊥平面ABCDPA=AD=2BD=.

1)求证:BD⊥平面PAC

2)求二面角PCDB余弦值的大小;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中为正实数.

)若是函数的极值点,讨论函数的单调性;

)若上无最小值,且上是单调增函数,求的取值范围,并由此判断曲线与曲线交点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】612日,上海市发布了《上海市生活垃圾分类投放指南》,将人们生活中产生的大部分垃圾分为七大类.某幢楼前有四个垃圾桶,分别标有可回收物有害垃圾湿垃圾干垃圾,小明同学要将鸡骨头(湿垃圾)、贝壳(干垃圾)、指甲油(有害垃圾)、报纸(可回收物)全部投入到这四个桶中,若每种垃圾投放到每个桶中都是等可能的,那么随机事件“4种垃圾中至少有2种投入正确的桶中的概率是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某校高一年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:

分组

频数

频率

[10,15)

10

0.25

[15,20)

25

n

[20,25)

m

p

[25,30)

2

0.05

合计

M

1

(1)求出表中Mp及图中a的值;

(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[15,20)内的人数;

(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,请列举出所有基本事件,并求至多1人参加社区服务次数在区间[20,25)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某区选派7名队员代表本区参加全市青少年围棋锦标赛,其中3名来自A学校且1名为女棋手,另外4名来自B学校且2名为女棋手从这7名队员中随机选派4名队员参加第一阶段的比赛

求在参加第一阶段比赛的队员中,恰有1名女棋手的概率;

X为选出的4名队员中AB两校人数之差的绝对值,求随机变量X的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的普通方程与曲线的直角坐标方程;

(2)若交于两点,点的极坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体ABCDE中,平面EABMEC的中点.

求异面直线DMBE所成角的大小;

求二面角的余弦值.

查看答案和解析>>

同步练习册答案