【题目】在平面直角坐标系中,点是直线上的动点,为定点,点为的中点,动点满足,且,设点的轨迹为曲线.
(1)求曲线的方程;
(2)过点的直线交曲线于,两点,为曲线上异于,的任意一点,直线,分别交直线于,两点.问是否为定值?若是,求的值;若不是,请说明理由.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,四边形是直角梯形, , , 底面, , , 是的中点.
(1)求证:平面平面;
(2)若二面角的余弦值为,求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F1、F2是椭圆的左、右焦点,A是椭圆上位于第一象限内的一点,点B也在椭圆上,且满足(O是坐标原点),若椭圆的离心率等于
(1)求直线AB的方程;
(2)若三角形ABF2的面积等于,求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列的前项和为,,.
(1)求数列的通项公式;
(2)设数列满足:
对于任意,都有成立.
①求数列的通项公式;
②设数列,问:数列中是否存在三项,使得它们构成等差数列?若存在,求出这三项;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的的参数方程为(其中为参数),以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线经过点.曲线的极坐标方程为.
(1)求直线的普通方程与曲线的直角坐标方程;
(2)过点作直线的垂线交曲线于两点(在轴上方),求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大型运动会的组委会为了搞好接待工作,招募了30名男志愿者和20名女志愿者.调查发现,这些志愿者中有部分志愿者喜爱运动,另一部分志愿者不喜欢运动,并得到了如下等高条形图和列联表:
喜爱运动 | 不喜爱运动 | 总计 | |
男生 | 30 | ||
女生 | 20 | ||
总计 | 50 |
(1)求出列联表中的值;
(2)是否有的把握认为喜爱运动与性别有关?附:参考公式和数据:,(其中)
0.500 | 0.100 | 0.050 | 0.010 | 0.001 | |
0.455 | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com