【题目】在①;②这两个条件中任选-一个,补充在下面问题中,然后解答补充完整的题.
在中,角的对边分别为,已知 ,.
(1)求;
(2)如图,为边上一点,,求的面积
【答案】(1)见解析(2)见解析
【解析】
(1)结合正弦定理,条件选择①,则,再利用公式求;
若选择条件②,由正弦定理和诱导公式可得,再根据二倍角公式求得,再根据求解.
(2)解法1:设,在中由余弦定理,解得,再由(1),解得边长,最后求得到的面积;解法2:由 可知,,,再根据正弦定理和面积公式 .
解:若选择条件①,则答案为:
(1)在中,由正弦定理得,
因为,所以,
所以,因为,所以.
(2)解法1:设,易知
在中由余弦定理得:,解得.
所以
在中,
所以,所以,
所以
解法2:因为,所以,
因为所以,
所以
因为为锐角,所以
又
所以
所以
若选择条件②,则答案为:
(1)因为,所以,
由正弦定理得,
因为,所以,
因为,所以,
则,所以.
(2)同选择①
科目:高中数学 来源: 题型:
【题目】如图, 是边长为3的等边三角形,四边形为正方形,平面平面.点、分别为、上的点,且,点为上的一点,且.
(Ⅰ)当时,求证: 平面;
(Ⅱ)当时,求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(12分)已知等差数列{an}中,a1=1,a3=﹣3.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{an}的前k项和Sk=﹣35,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在某商业区周边有 两条公路和,在点处交汇,该商业区为圆心角,半径3的扇形,现规划在该商业区外修建一条公路,与,分别交于,要求与扇形弧相切,切点不在,上.
(1)设试用表示新建公路的长度,求出满足的关系式,并写出的范围;
(2)设,试用表示新建公路的长度,并且确定的位置,使得新建公路的长度最短.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某几何体中,四边形是边长为的正方形, 是直角梯形, 是直角, , 是以为直角顶点的等腰直角三角形, .
(1)求证:平面平面;
(2)求平面与平面所成的锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:,为坐标原点,为椭圆的左焦点,离心率为,直线与椭圆相交于,两点.
(1)求椭圆的方程;
(2)若是弦的中点,是椭圆上一点,求的面积最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com