精英家教网 > 高中数学 > 题目详情
(2013•保定一模)已知函数f(x)=
x2+2x(x≥0)
g(x)     (x<0)
为奇函数,则f(g(-1))=(  )
分析:根据f(x)为奇函数求出g(x),代入x=-1即可求得g(-1),进而求得f(g(-1)).
解答:解:设x<0,则-x>0,f(-x)=-f(x),即(-x)2+2(-x)=-f(x),
所以f(x)=-x2+2x,即g(x)=-x2+2x,
所以g(-1)=-1-2=-3,f(g(-1))=f(-3)=g(-3)=-(-3)2+2(-3)=-15.
故选C.
点评:本题考查奇函数的性质、分段函数求值,考查学生灵活运用知识解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•保定一模)已知x,y满足不等式组
y≤x
x+y≥2
x≤2
,则z=2x+y的最大值与最小值的比值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•保定一模)在△ABC中,a、b、c分别为∠A、∠B、∠C的对边,三边a、b、c成等差数列,且B=
π
4
,则|cosA-cosC|的值为
42
42

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•保定一模)已知函数f (x)=
x2+ax,x≤1
ax2+x,x>1
在R上单调递减,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•保定一模)三棱锥V-ABC的底面ABC为正三角形,侧面VAC垂直于底面,VA=VC,已知其正视图(VAC)的面积为
2
3
,则其左视图的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•保定一模)若平面向量
a
b
c
两两所成的角相等,且|
a
|=1,|
b
|=1,|
c
|=3
,则|
a
+
b
+
c
|
等于(  )

查看答案和解析>>

同步练习册答案