精英家教网 > 高中数学 > 题目详情

【题目】下列各组函数是相等函数的为( )
A.
B.f(x)=(x﹣1)2 , g(x)=x﹣1
C.f(x)=x2+x+1,g(t)=t2+t+1
D.

【答案】C
【解析】解:对于A,f(x)=x+2的定义域为R,g(x)= =x+2的定义域为{x|x≠2},定义域不同,故不为相等函数;

对于B,f(x)=(x﹣1)2,g(x)=x﹣1的对应法则不同,故不为相等函数;

对于C,f(x)=x2+x+1,g(t)=t2+t+1,定义域都为R,值域都为[ ,+∞),故为相等函数;

对于D,f(x)= =|x|,g(x)= =x,对应法则不同,故不为相等函数.

所以答案是:C.

【考点精析】解答此题的关键在于理解判断两个函数是否为同一函数的相关知识,掌握只有定义域和对应法则二者完全相同的函数才是同一函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆C过坐标原点O,且与x轴、y轴分别交于点A、B,圆心坐标为(t,t)(t>0).
(1)若△AOB的面积为2,求圆C的方程;
(2)直线2x+y﹣6=0与圆C交于点D、E,是否存在t使得|OD|=|OE|?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C:f(x)=x3﹣ax+a,若过曲线C外一点A(1,0)引曲线C的两条切线,它们的倾斜角互补,则a的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的顶点B(-1,-3),边AB上的高CE所在直线的方程为 ,BC边上中线AD所在的直线方程为
(1)求直线AB的方程;
(2)求点C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= 的定义域是( )
A.{x|x≥4}
B.{x|x<4}
C.{x|x≤4,且x≠1}
D.{x|x<4,且x≠﹣1}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线x+y﹣1=0与椭圆 相交于A,B两点,线段AB中点M在直线 上.
(1)求椭圆的离心率;
(2)若椭圆右焦点关于直线l的对称点在单位圆x2+y2=1上,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产三种型号的轿车,产量分别是1600辆、6000辆和2000辆,为检验公司的产品质量,现从这三种型号的轿车种抽取48辆进行检验,这三种型号的轿车依次应抽取

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知双曲线 (a>0,b>0)的左、右焦点分别为F1、F2 , |F1F2|=8,P是双曲线右支上的一点,直线F2P与y轴交于点A,△APF1的内切圆在边PF1上的切点为Q,若|PQ|=2,则该双曲线的离心率为(

A.
B.
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】x∈R,则f(x)与g(x)表示同一函数的是( )
A.f(x)=x2
B.f(x)=1,g(x)=(x﹣1)0
C.
D. ,g(x)=x﹣3

查看答案和解析>>

同步练习册答案