【题目】已知定点,定直线: ,动圆过点,且与直线相切.
(Ⅰ)求动圆的圆心轨迹的方程;
(Ⅱ)过点的直线与曲线相交于, 两点,分别过点, 作曲线的切线, ,两条切线相交于点,求外接圆面积的最小值.
【答案】(Ⅰ);(Ⅱ)当时线段最短,最短长度为4,此时圆的面积最小,最小面积为.
【解析】试题分析:(Ⅰ)设,由化简即可得结论;(Ⅱ)由题意的外接圆直径是线段,设: ,与 联立得,从而得, 时线段最短,最短长度为4,此时圆的面积最小,最小面积为.
试题解析:(Ⅰ)设点到直线的距离为,依题意.
设,则有 .
化简得.
所以点的轨迹的方程为.
(Ⅱ)设: ,
代入中,得.
设, ,
则, .
所以 .
因为: ,即,所以.
所以直线的斜率为,直线的斜率为.
因为,
所以,即为直角三角形.
所以的外接圆的圆心为线段的中点,线段是直径.
因为,
所以当时线段最短,最短长度为4,此时圆的面积最小,最小面积为.
【方法点晴】本题主要考查直接法求轨迹方程、点到直线的距离公式及三角形面积公式,属于难题.求轨迹方程的常见方法有:①直接法,设出动点的坐标,根据题意列出关于的等式即可;②定义法,根据题意动点符合已知曲线的定义,直接求出方程;③参数法,把分别用第三个变量表示,消去参数即可;④逆代法,将代入.本题(Ⅰ)就是利用方法①求圆心轨迹方程的.
科目:高中数学 来源: 题型:
【题目】已知椭圆(是大于的常数)的左、右顶点分别为、,点是椭圆上位于轴上方的动点,直线、与直线分别交于、两点(设直线的斜率为正数).
(Ⅰ)设直线、的斜率分别为, ,求证为定值.
(Ⅱ)求线段的长度的最小值.
(Ⅲ)判断“”是“存在点,使得是等边三角形”的什么条件?(直接写出结果)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线,直线(其中)与曲线相交于、两点.
(Ⅰ)若,试判断曲线的形状.
(Ⅱ)若,以线段、为邻边作平行四边形,其中顶点在曲线上, 为坐标原点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是一段圆锥曲线,曲线与两个坐标轴的交点分别是, , .
(Ⅰ)若该曲线表示一个椭圆,设直线过点且斜率是,求直线与这个椭圆的公共点的坐标.
(Ⅱ)若该曲线表示一段抛物线,求该抛物线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中正确的命题有( )个
(1)如果平面平面,那么平面内一定存在直线平行于平面
(2)如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面
(3)如果平面平面,平面平面, ,那么平面
(4)如果平面平面,那么平面内所有直线都垂直于平面
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在上的函数,如果存在函数(为常数),使得对一切实数都成立,则称为函数的一个承托函数,给出如下命题:
①函数是函数的一个承托函数;
②函数是函数的一个承托函数;
③若函数是函数的一个承托函数,则的取值范围是;
④值域是的函数不存在承托函数.
其中正确的命题的个数为__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com