精英家教网 > 高中数学 > 题目详情

【题目】已知定点,定直线 ,动圆过点,且与直线相切.

(Ⅰ)求动圆的圆心轨迹的方程;

(Ⅱ)过点的直线与曲线相交于 两点,分别过点 作曲线的切线 ,两条切线相交于点,求外接圆面积的最小值.

【答案】(Ⅰ);(Ⅱ)当时线段最短,最短长度为4,此时圆的面积最小,最小面积为.

【解析】试题分析:,由化简即可得结论;由题意的外接圆直径是线段 联立得从而得 时线段最短,最短长度为4,此时圆的面积最小,最小面积为.

试题解析:(Ⅰ)设点到直线的距离为,依题意.

,则有 .

化简得.

所以点的轨迹的方程为.

(Ⅱ)设

代入中,得.

.

所以 .

因为 ,即,所以.

所以直线的斜率为,直线的斜率为.

因为

所以,即为直角三角形.

所以的外接圆的圆心为线段的中点,线段是直径.

因为

所以当时线段最短,最短长度为4,此时圆的面积最小,最小面积为.

【方法点晴】本题主要考查直接法求轨迹方程、点到直线的距离公式及三角形面积公式,属于难题.求轨迹方程的常见方法有:①直接法,设出动点的坐标,根据题意列出关于的等式即可;②定义法,根据题意动点符合已知曲线的定义,直接求出方程;③参数法,把分别用第三个变量表示,消去参数即可;④逆代法,将代入.本题(Ⅰ)就是利用方法①求圆心轨迹方程的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,正三棱锥,已知

(1)求此三棱锥内切球的半径.

(2)若是侧面上一点,试在面上过点画一条与棱垂直的线段,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知单调递增的等比数列满足:

(1)求数列的通项公式;

(2)若数列的前项和为 , 成立的正整数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知| |=1,| |=
(1)若 ,求
(2)若 的夹角为135°,求| |;
(3)若 垂直,求 的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆是大于的常数)的左、右顶点分别为,点是椭圆上位于轴上方的动点,直线与直线分别交于两点(设直线的斜率为正数).

Ⅰ)设直线的斜率分别为 ,求证为定值.

Ⅱ)求线段的长度的最小值.

Ⅲ)判断存在点,使得是等边三角形的什么条件?(直接写出结果)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线,直线(其中)与曲线相交于两点.

Ⅰ)若,试判断曲线的形状.

Ⅱ)若,以线段为邻边作平行四边形,其中顶点在曲线上, 为坐标原点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一段圆锥曲线,曲线与两个坐标轴的交点分别是 .

Ⅰ)若该曲线表示一个椭圆,设直线过点且斜率是,求直线与这个椭圆的公共点的坐标.

Ⅱ)若该曲线表示一段抛物线,求该抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确的命题有( )个

(1)如果平面平面,那么平面内一定存在直线平行于平面

(2)如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面

(3)如果平面平面,平面平面,那么平面

(4)如果平面平面,那么平面内所有直线都垂直于平面

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数,如果存在函数为常数),使得对一切实数都成立,则称为函数的一个承托函数,给出如下命题:

①函数是函数的一个承托函数;

②函数是函数的一个承托函数;

③若函数是函数的一个承托函数,则的取值范围是

④值域是的函数不存在承托函数.

其中正确的命题的个数为__________

查看答案和解析>>

同步练习册答案