精英家教网 > 高中数学 > 题目详情

【题目】设定义在(0,+∞)的单调函数f(x),对任意的x∈(0,+∞)都有f[f(x)﹣log2x]=6.若x0是方程f(x)﹣f′(x)=4的一个解,且 ,则a=( )
A.4
B.3
C.2
D.1

【答案】D
【解析】根据题意,对任意的x∈(0,+∞),都有f[f(x)﹣log2x]=6,
又由f(x)是定义在(0,+∞)上的单调函数,
则f(x)﹣log2x为定值,
设t=f(x)﹣log2x,则f(x)=t+log2x
又由f(t)=6,可得t+log2t=6,
可解得t=4,故f(x)=4+log2x,f′(x)=
又x0是方程f(x)﹣f′(x)=4的一个解,
所以x0是函数F(x)=f(x)﹣f′(x)﹣4=log2x﹣ 的零点,
分析易得F(1)=﹣ <0,F(2)=1﹣ =1﹣ >0,
故函数F(x)的零点介于(1,2)之间,故a=1,
所以答案是:1
【考点精析】掌握函数的零点与方程根的关系是解答本题的根本,需要知道二次函数的零点:(1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点;(2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点;(3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的偶函数,且当时, .现已画出函数轴左侧的图象,如图所示,并根据图象:

(1)直接写出函数 的增区间;

(2)写出函数 的解析式;

(3)若函数 ,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为偶函数,且函数图象的两相邻对称轴间的距离为.

(1)求的值;

(2)求函数的对称轴方程;

(3)当时,方程有两个不同的实根,求m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆上的焦点为,离心率为

(1)求椭圆方程;

2)设过椭圆顶点,斜率为的直线交椭圆于另一点,交轴于点,且 成等比数列,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经过市场调查,超市中的某种小商品在过去的近40天的日销售量(单位:件)与价格(单位:元)为时间(单位:天)的函数,且日销售量近似满足,价格近似满足

(1)写出该商品的日销售额(单位:元)与时间)的函数解析式并用分段函数形式表示该解析式(日销售额=销售量商品价格);

(2)求该种商品的日销售额的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在原点,焦点在x轴上,左、右焦点分别为F1F2,且|F1F2|=2,点1 在椭圆C

1求椭圆C的方程;

2F1的直线l与椭圆C相交于AB两点,且△AF2B的面积为,求以F2为圆心且与直线l相切的圆的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018河北保定市上学期期末调研已知点到点的距离比到轴的距离大1

I)求点的轨迹的方程;

II)设直线 ,交轨迹两点, 为坐标原点,试在轨迹部分上求一点,使得的面积最大,并求其最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知DEF三边所在的直线分别为l1:x=-2,l2x+y-4=0,l3xy-4=0,CDEF的内切圆.

(1)求⊙C的方程;

(2)设⊙Cx轴交于AB两点,点P在⊙C内,且满足.记直线PAPB的斜率分别为k1k2k1 k2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,

(1)求证:

(2)试在线段上找一点,使平面,并说明理由.

查看答案和解析>>

同步练习册答案