精英家教网 > 高中数学 > 题目详情

【题目】某工厂利用辐射对食品进行灭菌消毒,现准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,建房防辐射材料的选用与宿舍到工厂距离有关.若建造宿舍的所有费用(万元)和宿舍与工厂的距离的关系为: .为了交通方便,工厂与宿舍之间还要修一条简易便道,已知修路每公里成本为万元,工厂一次性补贴职工交通费万元.为建造宿舍修路费用与给职工的补贴之和.

的表达式

宿舍应建在离工厂多远处,可使总费用最小,并求最小值.

【答案】见解析

【解析】试题分析:(1利用题意提取有关知识,利用函数模型建立表达式;(2利用导数研究函数的单调性,进而求出函数的最小值.

试题解析:

整理得

所以上单调递减,在上单调递增

故当时, 取得最小值

答:⑴

宿舍应建在离工厂处,可使总费用最小,最小值为万元

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】高二某班共有20名男生,在一次体验中这20名男生被平均分成两个小组,第一组和第二组男生的身高(单位: )的茎叶图如下:

1)根据茎叶图,分别写出两组学生身高的中位数;

2)从该班身高超过7名男生中随机选出2名男生参加校篮球队集训,求这2名男生至少有1人来自第二组的概率;

3)在两组身高位于(单位: )的男生中各随机选出2人,设这4人中身高位于(单位: )的人数为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产甲、乙两种桶装产品,已知生产甲产品1桶需耗原料2千克, 原料3千克;生产乙产品1桶需耗原料2千克, 原料1千克,每桶甲产品的利润是300元,每桶乙产品的利润是400元,公司在要求每天消耗原料都不超过12千克的条件下,生产产品、产品的利润之和的最大值为( )

A. 1800元 B. 2100元 C. 2400元 D. 2700元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( )
A.乙盒中黑球不多于丙盒中黑球
B.乙盒中红球与丙盒中黑球一样多
C.乙盒中红球不多于丙盒中红球
D.乙盒中黑球与丙盒中红球一样多

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判断下列两圆的位置关系.

(1)C1x2y2-2x-3=0,C2x2y2-4x+2y+3=0;___________

(2)C1x2y2-2y=0,C2x2y2-2x-6=0;___________

(3)C1x2y2-4x-6y+9=0,C2x2y2+12x+6y-19=0;___________

(4)C1x2y2+2x-2y-2=0,C2x2y2-4x-6y-3=0.___________

(5)x2y2=9x2y2-8x+6y+9=0 ________________

(6)C1x2y2-2x-6y-6=0与圆C2x2y2-4x+2y+4=0______

(7)x2y2+6x-7=0和圆x2y2+6y-27=0 ____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂利用辐射对食品进行灭菌消毒,现准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,建房防辐射材料的选用与宿舍到工厂距离有关.若建造宿舍的所有费用(万元)和宿舍与工厂的距离的关系为: .为了交通方便,工厂与宿舍之间还要修一条简易便道,已知修路每公里成本为万元,工厂一次性补贴职工交通费万元.为建造宿舍修路费用与给职工的补贴之和.

的表达式

宿舍应建在离工厂多远处,可使总费用最小,并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列A: ,… (N≥2)。如果对小于n(2≤n≤N)的每个正整数k都有 ,则称n是数列A的一个“G时刻”。记“G(A)是数列A 的所有“G时刻”组成的集合。
(1)对数列A:-2,2,-1,1,3,写出G(A)的所有元素;
(2)证明:若数列A中存在 使得 > ,则G(A)
(3)证明:若数列A满足 - ≤1(n=2,3, …,N),则GA.的元素个数不小于 -

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.
(1)A.【选修4—1几何证明选讲】
如图,在△ABC中,∠ABC=90°,BDACD为垂足,EBC的中点,求证:∠EDC=∠ABD.

(2)B.【选修4—2:矩阵与变换】
已知矩阵A= 矩阵B的逆矩阵B1= ,求矩阵AB.
(3)【选修4—4:坐标系与参数方程】在平面直角坐标系xOy中,已知直线l的参数方程为 t为参数),椭圆C的参数方程为 为参数).设直线l与椭圆C相交于AB两点,求线段AB的长.
(4)D. 设a>0,|x﹣1|< ,|y﹣2|< ,求证:|2x+y﹣4|<a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1C1,A1A⊥底面ABC,且△ABC为正三角形,A1A=AB=6,D为AC中点.

(1)求三棱锥C1﹣BCD的体积;

(2)求证:平面BC1D⊥平面ACC1A1

(3)求证:直线AB1∥平面BC1D.

查看答案和解析>>

同步练习册答案