精英家教网 > 高中数学 > 题目详情

已知f(x)=ex-ax-1.

(1)求f(x)的单调增区间;

(2)若f(x)在定义域R内单调递增,求a的取值范围;

(3)是否存在a,使f(x)在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出a的值;若不存在,说明理由.

(1)(lna,+∞)

(2)a≤0

(3)a=1


  f′(x)= e x-a.
(1)若a≤0,f′(x)= ex-a≥0恒成立,即f(x)在R上递增.
若a>0, ex-a≥0,∴ex≥a,x≥lna.
∴f(x)的递增区间为(lna,+∞).
(2)∵f(x)在R内单调递增,∴f′(x)≥0在R上恒成立.
∴ex-a≥0,即a≤ex在R上恒成立.
∴a≤(exmin,又∵ex>0,∴a≤0.
(3)方法一 由题意知ex-a≤0在(-∞,0]上恒成立.
∴a≥ex在(-∞,0]上恒成立.
∵ex在(-∞,0]上为增函数.
∴x=0时,ex最大为1.∴a≥1.
同理可知ex-a≥0在[0,+∞)上恒成立.
∴a≤ex在[0,+∞)上恒成立.
∴a≤1,∴a=1.
方法二 由题意知,x=0为f(x)的极小值点.
∴f′(0)=0,即e0-a=0,∴a=1.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
ex-e-x
2
,则下列正确的是(  )
A、奇函数,在R上为增函数
B、偶函数,在R上为增函数
C、奇函数,在R上为减函数
D、偶函数,在R上为减函数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ex-
12
(1+a)x2

(1)求f(x)在x=0处的切线方程;
(2)若f(x)在区间x∈(0,2]为增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
ex-e-xea-e-a
,若函数f(x)在R上是减函数,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
ex-1ex+1
的值域为
(-1,1)
(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
ex-1,x≤0
f(x-1)+1,x>0
,则方程f(x)-x=0在区间[0,5)
上所有实根和为(  )

查看答案和解析>>

同步练习册答案