精英家教网 > 高中数学 > 题目详情

【题目】设函数.

(Ⅰ) 求曲线在点处的切线方程;

(Ⅱ) 讨论函数的单调性;

(Ⅲ) 设,当时,若对任意的,存在,使得,求实数的取值范围.

【答案】(Ⅰ); (Ⅱ)见解析; (Ⅲ).

【解析】

()由题意可得,据此确定切线的斜率,结合切点坐标确定切线方程即可;

()可得,据此分类讨论确定函数的单调性即可;

()由题意可得,则原问题等价于,据此求解实数b的取值范围即可.

()

因为,

所以曲线在点处的切线方程为:.

(),所以

,

此时上单调递减,上单调递增;

,

此时上单调递增,上单调递减.

(),上单调递减,上单调递增,

所以对任意,

又已知存在

使,所以

即存在,使

即因为当

所以,即实数取值范围是.

所以实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某有机水果种植基地试验种植的某水果在售卖前要成箱包装,每箱80个,每一箱水果在交付顾客之前要按约定标准对水果作检测,如检测出不合格品,则更换为合格品.检测时,先从这一箱水果中任取10个作检测,再根据检测结果决定是否对余下的所有水果作检测.设每个水果为不合格品的概率都为,且各个水果是否为不合格品相互独立.

(Ⅰ)记10个水果中恰有2个不合格品的概率为,求取最大值时p的值

(Ⅱ)现对一箱水果检验了10个,结果恰有2个不合格,以(Ⅰ)中确定的作为p的值.已知每个水果的检测费用为1.5元,若有不合格水果进入顾客手中,则种植基地要对每个不合格水果支付a元的赔偿费用

(ⅰ)若不对该箱余下的水果作检验,这一箱水果的检验费用与赔偿费用的和记为X,求EX;

(ⅱ)以检验费用与赔偿费用和的期望值为决策依据,当种植基地要对每个不合格水果支付的赔偿费用至少为多少元时,将促使种植基地对这箱余下的所有水果作检验?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中是自然对数的底数.

,使得不等式成立,试求实数的取值范围;

)若,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知斜率存在且不为0的直线过点,设直线与椭圆交于两点,椭圆的左顶点为.

1)若的面积为,求直线的方程;

2)若直线分别交直线于点,且,记直线的斜率分别为.探究:是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(选修4-4:坐标系与参数方程)

在直角坐标系中,半圆C的参数方程为为参数,),以O为极点,x轴的非负半轴为极轴建立极坐标系.

)求C的极坐标方程;

)直线的极坐标方程是,射线OM与半圆C的交点为OP,与直线的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为配合“2019双十二促销活动,某公司的四个商品派送点如图环形分布,并且公司给四个派送点准备某种商品各50.根据平台数据中心统计发现,需要将发送给四个派送点的商品数调整为40455461,但调整只能在相邻派送点进行,每次调动可以调整1件商品.为完成调整,则(

A.最少需要16次调动,有2种可行方案

B.最少需要15次调动,有1种可行方案

C.最少需要16次调动,有1种可行方案

D.最少需要15次调动,有2种可行方案

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:

积极参加

班级工作

不太主动参加

班级工作

合计

学习积极性高

18

7

25

学习积极性一般

6

19

25

合计

24

26

50

1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?

2)试运用独立性检验的思想方法能否有99.9%的把握认为学生的学习积极性与对待班级工作的态度有关系?并说明理由.(参考下表)

P(K2

k)

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:,其中)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最大值为.

(Ⅰ)求实数的值;

(Ⅱ)当时,讨论函数的单调性;

(Ⅲ)当时,令,是否存在区间.使得函数在区间上的值域为若存在,求实数的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在三棱锥中,底面的中点.

(1)求证:

(2)若二面角的大小为,求三棱锥的体积.

查看答案和解析>>

同步练习册答案