分析 利用椭圆的离心率以及抛物线的焦点坐标,求出椭圆的半长轴,然后求解抛物线的准线方程,求出A,B坐标,即可求解所求结果.
解答 解:椭圆E的中心在坐标原点,离心率为$\frac{\sqrt{3}}{2}$,E的右焦点(c,0)与抛物线C:y2=12x的焦点(3,0)重合,
可得c=3,a=2$\sqrt{3}$,b2=3,椭圆的标准方程为:$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{3}$=1,
抛物线的准线方程为:x=-3,
代入椭圆方程,解得y=±$\frac{\sqrt{3}}{2}$,所以A(-3,$\frac{\sqrt{3}}{2}$),B(-3,-$\frac{\sqrt{3}}{2}$).
∴|AB|=$\sqrt{3}$.
故答案为:$\sqrt{3}$.
点评 本题考查抛物线以及椭圆的简单性质的应用,考查计算能力.
科目:高中数学 来源: 题型:选择题
A. | 模型1的相关指数R2为0.25 | B. | 模型2的相关指数R2为0.87 | ||
C. | 模型3的相关指数R2为0.50 | D. | 模型4的相关指数R2为0.97 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $±\sqrt{2}$ | B. | $±\frac{{\sqrt{2}}}{3}$ | C. | $±\frac{{\sqrt{2}}}{4}$ | D. | $±\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $6+2\sqrt{3}$ | B. | $7+2\sqrt{3}$ | C. | $6+4\sqrt{3}$ | D. | $7+4\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $y=\frac{1}{x}$ | B. | y=x3 | C. | y=|x| | D. | $y={(\frac{{\sqrt{2}}}{2})^{|x|}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{40\sqrt{3}}{3}$ | B. | 20$\sqrt{3}$ | C. | 40 | D. | 10$\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com