精英家教网 > 高中数学 > 题目详情
1.已知函数$f(x)=\left\{\begin{array}{l}(3a-1)x+4a,x<1\\-{x^2}+2ax+1,x≥1\end{array}\right.$是R上的减函数,则实数a的取值范围是(  )
A.(-∞,1]B.$[{\frac{1}{5},\frac{1}{3}})$C.$({-∞,\frac{1}{3}})$D.$[{\frac{1}{5},1}]$

分析 要求f(x)在每一段上都是减函数,且在第一段的最小值大于或大于在第二段上的最大值即可.

解答 解:∵$f(x)=\left\{\begin{array}{l}(3a-1)x+4a,x<1\\-{x^2}+2ax+1,x≥1\end{array}\right.$是R上的减函数,
∴$\left\{\begin{array}{l}{3a-1<0}\\{-\frac{2a}{-2}≤1}\\{3a-1+4a≥2a}\end{array}\right.$,解得$\frac{1}{5}$≤a$<\frac{1}{3}$.
故选B.

点评 本题考查了分段函数的单调性,找到两段上的最值关系是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥S-ABCD中,底面ABCD是菱形,SA⊥底面ABCD,求证:平面SBD⊥平面SAC;

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若实数x,y满足$\left\{\begin{array}{l}2x-y-2≤0\\ x+y-1≥0\\ x-y+1≥0\end{array}\right.$,则z=2x-y的最小值为(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知集合A={x|x2-5x-6≤0},B={x|x-3a<0},
(Ⅰ)当$a=\frac{1}{3}$时,求A∩B;
(Ⅱ)若A∪B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=${x^2}+\frac{9}{1+|x|}$是(  )
A.奇函数B.偶函数
C.既是奇函数又是偶函数D.非奇非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知集合A={-1,1},B={m|m=x+y,x∈A,y∈A},则用列举法表示集合B={0};若集合M={-1,1,3},N={a+2,a2+4}满足M∩N={3},则实数a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知等比数列{an}的公比大于零,a1+a2=3,a3=4,数列{bn}是等差数列,${b_n}=\frac{{n({n+1})}}{n+c}$,c≠0是常数.
(1)求的值,数列{an}与{bn}的通项公式;
(2)设数列{cn}满足:当n为偶数时cn=an,当n为奇数时cn=bn,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.判断下列函数的奇偶性:
(1)f(x)=$\sqrt{2}$sin(2x+$\frac{5}{2}$π);
(2)f(x)=$\sqrt{2sinx-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.椭圆上的点A(-3,0)关于直线y=x和y=-x的对称点分别为椭圆的焦点F1和F2,P为椭圆上任意一点,则|$\overrightarrow{P{F}_{1}}$|•|$\overrightarrow{P{F}_{2}}$|的最大值为18.

查看答案和解析>>

同步练习册答案