分析 利用已知条件利用基本不等式求出xy的最小值,转化x+y=(x+y)($\frac{2}{x}$+$\frac{8}{y}$)化简后利用基本不等式求出最小值即可.
解答 解:∵x>0,y>0,
∴1=$\frac{2}{x}+\frac{8}{y}$≥2$\sqrt{\frac{2}{x}•\frac{8}{y}}$,得xy≥64,
当且仅当$\frac{2}{x}=\frac{8}{y}=\frac{1}{2}$即x=4,y=16时取等号.
∵x>0,y>0,
∴$\frac{y}{x}$,$\frac{x}{y}$>0.
∴x+y=(x+y)($\frac{2}{x}+\frac{8}{y}$)=10+$\frac{2y}{x}+\frac{8x}{y}$≥10+2$\sqrt{\frac{2y}{x}•\frac{8x}{y}}$=18.
当且仅当$\frac{2y}{x}=\frac{8x}{y}=4$,即x=6,y=12,
∴x=6,y=12时,x+y有最小值18.
点评 本题主要考查基本不等式在最值中的应用,注意检验等号成立的条件,式子的变形是解题的关键,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{15}{17}$ | B. | $\frac{16}{17}$ | C. | $\frac{5}{13}$ | D. | $\frac{12}{13}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com