【题目】已知函数.
(1)当时,求在处的切线方程;
(2)若,不等式恒成立,求的取值范围.
【答案】(1) (2)
【解析】
(1)对函数求导,求,,然后利用点斜式方程可求得答案;
(2)对函数求导,构造函数判断其在上单调递增,分类讨论时:判断函数单调递增函数,然后再由求得的取值范围;时,使得,判断在上函数单调递减,上单调递增,求得函数最小值然后利用和进行适当地转化即可求出参数的取值范围,最后总结讨论结果得出的取值范围.
解:(1)当时,,,
则,,由点斜式方程可得:化简得:,
即切线方程为.
(2)由,得,
令,则.
所以在上单调递增,且.
①当时,,函数单调递增,
由于恒成立,则有,即,
所以满足条件;
②当时,则存在,使得,当时,,则,单调递减;当时,,则,单调递增.
所以,
又满足,即,
所以,则,即,得.
又,令,则,
可知,当时,,则单调递减,
所以,
此时满足条件.
综上所述,的取值范围是.
科目:高中数学 来源: 题型:
【题目】某地拟规划种植一批芍药,为了美观,将种植区域(区域I)设计成半径为1km的扇形,中心角().为方便观赏,增加收入,在种植区域外围规划观赏区(区域II)和休闲区(区域III),并将外围区域按如图所示的方案扩建成正方形,其中点,分别在边和上.已知种植区、观赏区和休闲区每平方千米的年收入分别是10万元、20万元、20万元.
(1)要使观赏区的年收入不低于5万元,求的最大值;
(2)试问:当为多少时,年总收入最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(1) 证明:PB∥平面AEC
(2) 设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆的左、右顶点分别为A、B,双曲线以A、B为顶点,焦距为,点P是上在第一象限内的动点,直线AP与椭圆相交于另一点Q,线段AQ的中点为M,记直线AP的斜率为为坐标原点.
(1)求双曲线的方程;
(2)求点M的纵坐标的取值范围;
(3)是否存在定直线使得直线BP与直线OM关于直线对称?若存在,求直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将初始温度为的物体放在室温恒定为的实验室里,现等时间间隔测量物体温度,将第次测量得到的物体温度记为,已知.已知物体温度的变化与实验室和物体温度差成正比(比例系数为).给出以下几个模型,那么能够描述这些测量数据的一个合理模型为__________:(填写模型对应的序号)
①;②;③.
在上述模型下,设物体温度从升到所需时间为,从上升到所需时间为,从上升到所需时间为,那么与的大小关系是________(用“”,“”或“”号填空)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为.
(1)过点的直线与抛物线相交于两点,若,求直线的方程;
(2)点是抛物线上的两点,点的纵坐标分别为1,2,分别过点作倾斜角互补的两条直线交抛物线于另外不同两点,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有行数表如下:
第一行:
第二行:
第三行:
…… …… ……
第行:
第m行:
按照上述方式从第一行写到第m行(写下的第n个数记作)得到有穷数列,其前n项和为,若存在,则的最小值为______
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com