精英家教网 > 高中数学 > 题目详情

【题目】在极坐标系中,已知曲线

1)求曲线的直角坐标方程,并判断两曲线的形状;

2)若曲线交于两点,求两交点间的距离.

【答案】1表示一条直线,是圆心为,半径为的圆;(2.

【解析】

1)直接利用极坐标方程与直角坐标方程之间的转换关系可将曲线的方程化为直角坐标方程,进而可判断出曲线的形状,在曲线的方程两边同时乘以,由可将曲线的方程化为直角坐标方程,由此可判断出曲线的形状;

2)由直线过圆的圆心,可得出为圆的一条直径,进而可得出.

1,则曲线的普通方程为

曲线表示一条直线;

,得,则曲线的直角坐标方程为,即

所以,曲线是圆心为,半径为的圆;

2)由(1)知,点在直线上,直线过圆的圆心.

因此,是圆的直径,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点是抛物线的顶点,上的两个动点,且.

1)判断点是否在直线上?说明理由;

2)设点是△的外接圆的圆心,求点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“中国剩余定理”又称“孙子定理”,最早可见于中国南北朝时期的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”,原文如下:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?现有这样一个相关的问题:将120202020个自然数中被5除余3且被7除余2的数按照从小到大的顺序排成一列,构成一个数列,则该数列各项之和为(

A.56383B.57171C.59189D.61242

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,椭圆C)的离心率为,左、右焦点分别为,椭圆C过点T为直线上的动点,过点T作椭圆C的切线AB为切点.

1)求证:AB三点共线;

2)过点作一条直线与曲线C交于PQ两点.PQ作直线的垂线,垂足依次为MN.求证:直线交于定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“- ”当作数字“1”,把阴爻“--”当作数字“0”,则八卦所代表的数表示如下:

卦名

符号

表示的二进制数

表示的十进制数

000

0

001

1

010

2

011

3

依此类推,则六十四卦中的“屯”卦,符号“ ”表示的十进制数是( )

A. 18B. 17C. 16D. 15

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系.xOy中,曲线C1的参数方程为 为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ.

1)求曲线C1的普通方程和C2的直角坐标方程;

2)已知曲线C2的极坐标方程为,点A是曲线C3C1的交点,点B是曲线C3C2的交点,且AB均异于原点O,且|AB|=4,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为奇函数,且的极小值为.为函数的导函数.

1)求的值;

2)若关于的方程有三个不等的实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面四边形(图①)中,均为直角三角形且有公共斜边,设,∠,∠,将沿折起,构成如图②所示的三棱锥,且使=.

1)求证:平面⊥平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数向左平移个单位,得到的图象,则满足(

A.图象关于点对称,在区间上为增函数

B.函数最大值为2,图象关于点对称

C.图象关于直线对称,在上的最小值为1

D.最小正周期为有两个根

查看答案和解析>>

同步练习册答案