精英家教网 > 高中数学 > 题目详情

【题目】试比较下面概率的大小:

1)如果以连续掷两次骰子依次得到的点数mn作为点P的横、纵坐标,点P在直线的下面包括直线的概率

2)在正方形x,随机地投掷点P,求点P落在正方形T内直线的下面包括直线的概率

【答案】

【解析】

1)把一颗质地均匀的骰子连续掷两次,依次得到点数mn,基本事件的总数为,将mn作为点P的横、纵坐标,则点P在直线下方包括直线的基本事件有10种,由此能示出点P在直线下方的概率;

2)分别求出正方形的面积以及阴影部分的面积,根据几何概型的面积之比即可求解,

求出了,即可得解.

解:(1)把一颗质地均匀的骰子连续掷两次,基本事件的总数为

m2345满足的点有:

10种.

2)正方形的面积

直线围成的三角形面积

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在新中国成立70周年国庆阅兵庆典中,众多群众在脸上贴着一颗红心,以此表达对祖国的热爱之情,在数学中,有多种方程都可以表示心型曲线,其中有著名的笛卡尔心型曲线,如图,在直角坐标系中,以原点O为极点,x轴正半轴为极轴建立极坐标系.图中的曲线就是笛卡尔心型曲线,其极坐标方程为),M为该曲线上的任意一点.

1)当时,求M点的极坐标;

2)将射线OM绕原点O逆时针旋转与该曲线相交于点N,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为t为参数),在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρsin2θ4cosθ

1)求直线l的普通方程与曲线C的直角坐标方程;

2)若直线lx轴的交点为F,直线l与曲线C的交点为AB,求|FA|+|FB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程:在直角坐标系中,曲线为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的极坐标方程;

2)已知点,直线的极坐标方程为,它与曲线的交点为,与曲线的交点为,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,将边长为1的正方形ABCD沿x轴正向滚动,先以A为中心顺时针旋转,当B落在x轴时,又以B为中心顺时针旋转,如此下去,设顶点C滚动时的曲线方程为,则下列说法不正确的是

A.恒成立B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知(其中.

1)当时,计算

2)记,试比较的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fxgx)=f+1kRk≠0),则下列关于函数yf[gx]+1的零点个数判断正确的是(

A.k0时,有2个零点;当k0时,有4个零点

B.k0时,有4个零点;当k0时,有2个零点

C.无论k为何值,均有2个零点

D.无论k为何值,均有4个零点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,人们的支付方式发生了巨大转变,使用移动支付购买商品已成为一部分人的消费习惯.某企业为了解该企业员工两种移动支付方式的使用情况,从全体员工中随机抽取了100人,统计了他们在某个月的消费支出情况.发现样本中两种支付方式都没有使用过的有5人;使用了两种方式支付的员工,支付金额和相应人数分布如下:

支付金额(元)

支付方式

大于2000

使用

18

29

23

使用

10

24

21

依据以上数据估算:若从该公司随机抽取1名员工,则该员工在该月两种支付方式都使用过的概率为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为了解某产品的销售情况,选择某个电商平台对该产品销售情况作调查.统计了一年内的月销售数量(单位:万件),得到该电商平台月销售数量的茎叶图.

1)求该电商平台在这一年内月销售该产品数量的中位数和平均数;

2)该企业与电商签订销售合同时规定:如果电商平台当月的销售件数不低于40万件,当月奖励该电商平台10万元;当月低于40万件没有奖励,用该样本估计总体,从电商平台一个年度内高于该年月销售平均数的月份中任取两个月,求这两个月企业发给电商平台的奖金为20万元的概率.

查看答案和解析>>

同步练习册答案