精英家教网 > 高中数学 > 题目详情
(1)已知,求证:
(2)已知,且
求证:
证明见解析.

试题分析:(1)本题证明只要利用作差法即可证得;(2)这个不等式比较复杂,考虑到不等式的形式,我们可用数学归纳法证明,关键在时的命题如何应用时的结论,中要把两个括号合并成一个,又能应用时的结论证明时的结论,当时,结论已经成立,当时,在中可找到一个,不妨设为,使,即,从而有
,这样代入进去可证得时结论成立.
(1)因为,所以,即;             2分
(2)证法一(数学归纳法):(ⅰ)当时,,不等式成立.      4分
(ⅱ)假设时不等式成立,即成立.    5分
时,若,则命题成立;若,则中必存在一个数小于1,不妨设这个数为,从而,即同理可得,
所以



 
时,不等式也成立.                           9分
由(ⅰ)(ⅱ)及数学归纳法原理知原不等式成立.                    10分
证法二:(恒等展开)左右展开,得

由平均值不等式,得
                            8分


.                                  10分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

用反证法证明:已知,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示的多面体中, 是菱形,是矩形,平面

(1)求证:平面平面
(2)若二面角为直二面角,求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,求证:关于的三个方程中至少有一个方程有实数根.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下面给出了关于复数的四种类比推理:
①复数的加减法运算可以类比多项式的加减法运算法则;
②由向量a的性质|
a
|2=
a
2类比得到复数z的性质|z|2=z2
③方程ax2+bx+c=0(a,b,c⊆R)有两个不同实数根的条件是b2-4ac>0可以类比得到:方程az2+bz+c=0(a,b,c⊆C)有两个不同复数根的条件是b2-4ac>0;
④由向量加法的几何意义可以类比得到复数加法的几何意义.
其中类比错误的是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,(其中
(1)求
(2)试比较的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若a,b,c是不全相等的正数,给出下列判断:
①(a-b)2+(b-c)2+(c-a)2≠0;
②a>b与a<b及a=b中至少有一个成立;
③a≠c,b≠c,a≠b不能同时成立.
其中判断正确的是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用反证法证明命题:若整数系数的一元二次方程 有有理实数根,那么中至少有一个是偶数,下列假设中正确的是()
A.假设至多有一个是偶数
B.假设至多有两个偶数
C.假设都是偶数
D.假设都不是偶数

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

用反证法证明命题:“若ab∈R,且a2+|b|=0,则ab全为0”时,
应假设为________.

查看答案和解析>>

同步练习册答案