精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面是平行四边形, .

(1)求证:平面平面

(2)若,试判断棱上是否存在与点不重合的点,使得直线与平面所成角的正弦值为,若存在,求出的值;若不存在,请说明理由.

【答案】(1)见解析(2) 棱上不存在与点不重合的点,使得直线与平面所成角的正弦值为.

【解析】试题分析:(1)第(1)问,把平面平面平面 (2)第(2)问,先利用向量法得到直线与平面所成角的方程,再探究方程的解的情况,从而得到解答.

试题解析:

(1)因为四边形是平行四边形, ,所以

,所以,所以

,且,所以平面

因为平面,所以平面平面.

(2)由(1)知平面

如图,分别以所在直线为轴、轴,平面内过点且与直线垂直的直线为轴,建立空间直角坐标系

,可得

所以

假设棱上存在点,使得直线与平面所成角的正弦值为

设平面的法向量为

,即,令,可得

所以平面的一个法向量为

设直线与平面所成的角为,则

整理得,因为,所以,故无解,

所以棱上不存在与点不重合的点,使得直线与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在点处的切线为

)若直线的斜率为,求函数的单调区间.

)若函数是区间上的单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查观众对电视剧《风筝》的喜爱程度,某电视台举办了一次现场调查活动.在参加此活动的甲、乙两地观众中,各随机抽取了8名观众对该电视剧评分做调查(满分100分),被抽取的观众的评分结果如图所示

(Ⅰ)计算:①甲地被抽取的观众评分的中位数;

②乙地被抽取的观众评分的极差;

(Ⅱ)用频率估计概率,若从乙地的所有观众中再随机抽取4人进行评分调查,记抽取的4人评分不低于90分的人数为,求的分布列与期望;

)从甲、乙两地分别抽取的8名观众中各抽取一人,在已知两人中至少一人评分不低于90分的条件下,求乙地被抽取的观众评分低于90分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆,椭圆的长轴长为8,离心率为

求椭圆方程;

椭圆内接四边形ABCD的对角线交于原点,且,求四边形ABCD周长的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若的一个极值点,求的最大值;

(2)若 ,都有 ,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足.

1)证明:是等比数列,是等差数列;

2)求的通项公式;

3)令,求数列的前项和的通项公式,并求数列的最大值、最小值,并指出分别是第几项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正方体中,E是棱的中点,F是侧面内的动点,且平面,给出下列命题:

F的轨迹是一条线段;不可能平行;BE是异面直线;平面不可能与平面平行.

其中正确的个数是  

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是自然对数的底数)

判断函数极值点的个数,并说明理由;

,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,以轴为始边做两个锐角,它们的终边分别与单位圆相交于AB两点,已知AB的横坐标分别为

1)求的值; 2)求的值。

查看答案和解析>>

同步练习册答案