精英家教网 > 高中数学 > 题目详情
(本小题满分13分)
已知点为抛物线: 的焦点,为抛物线上的点,且

(Ⅰ)求抛物线的方程和点的坐标;
(Ⅱ)过点引出斜率分别为的两直线与抛物线的另一交点为与抛物线的另一交点为,记直线的斜率为
(ⅰ)若,试求的值;
(ⅱ)证明:为定值.
(1)
(2),在第一问的基础上,分析得到三个斜率的关系式,然后化简变形得到证明。

试题分析:解:(Ⅰ)∵,∴
∴抛物线
在抛物线上,
.∴
(Ⅱ)(ⅰ)设直线
与抛物线交于两点,∴.
得:
,则
,即.
同理可得.
.

(ⅱ)证明:由(ⅰ)可知

,即证得为定值.……13分
点评:本题主要通过研究抛物线的标准方程、圆锥曲线的性质、直线与圆锥曲线的位置关系等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、数形结合思想、化归转化思想等
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

若直线y=x+k与曲线x=恰有一个公共点,则k的取值范围是___________

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的一个焦点与抛物线的焦点重合,则该椭圆的离心率为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线轴交于点,与直线交于点,椭圆为左顶点,以为右焦点,且过点,当时,椭圆的离心率的范围是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分)
在平面内,已知椭圆的两个焦点为,椭圆的离心率为 ,点是椭圆上任意一点, 且
(1)求椭圆的标准方程;
(2)以椭圆的上顶点为直角顶点作椭圆的内接等腰直角三角形,这样的等腰直角三角形是否存在?若存在请说明有几个、并求出直角边所在直线方程?若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过双曲线的左焦点作斜率为1的直线,该直线与双曲线的两条渐近线的交点分别为A、B,若,则双曲线的渐近线方程为(  )
A.                 B.
C.                D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若正三角形的一个顶点在原点,另两个顶点在抛物线上,则这个三角形的面积为         

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线的一条渐近线方程为,则其离心率为    

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,椭圆的中心在坐标原点0,顶点分别是A1, A2, B1, B2,焦点分别为F1 ,F2,延长B1F2 与A2B2交于P点,若为钝角,则此椭圆的离心率的取值范围为
A.(0,B.(,1)
C.(0,D.(,1)

查看答案和解析>>

同步练习册答案