【题目】在直三棱柱中,,,为线段上一点,平面.
(1)求证:为中点;
(2)若与所成角为,求直线与平面所成角的正弦值.
【答案】(1)见解析; (2).
【解析】
(1)连接交于,连接,则为中点.,由平面,根据线面平行的性质定理,可证,即可证明结论;
(2)建立空间直角坐标系,设,得出坐标,进而有坐标,
由与所成角为,利用向量夹角公式求出,求出坐标,求出平面的法向量,根据线面角公式,即可求解.
(1)证明:连接交于,连接
∵,∴为正方形,∴为中点.
又平面,平面平面,
平面,∴,又为中点,
∴为中点.
(2)如图,以为原点,以,,为
,,的正方向建立空间直角坐标系,
设,则,,,
,,,.
∵与所成角为,
∴,
整理得或(舍去),
,∴,
∵为中点,∴,.
设平面的一个法向量为,
则,即,取,
得,,∴
设直线与平面所成角为,
则,
故直线与平面所成角的正弦值为
科目:高中数学 来源: 题型:
【题目】给出下列三个命题:(1)如果一个平面内有无数条直线平行于另一个平面,则这两个平面平行;(2)一个平面内的任意一条直线都与另一个平面不相交,则这两个平面平行;(3)一个平面内有不共线的三点到另一个平面的距离相等,则这两个平面平行;其中正确命题的个数是( )
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了检测某种零件的一条生产线的生产过程,从生产线上随机抽取一批零件,根据其尺寸的数据得到如图所示的频率分布直方图.若尺寸落在区间()之外,则认为该零件属“不合格”的零件,其中,分别为样本平均数和样本标准差,计算可得:(同一组中的数据用该组区间的中点值作代表).
(1)若一个零件的尺寸是,试判断该零件是否属于“不合格”的零件;
(2)工厂利用分层抽样的方法从样本的前3组中抽出6个零件,标上记号,并从这6个零件中再抽取2个,求再次抽取的2个零件中恰有1个尺寸不超过的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学图书馆举行高中志愿者检索图书的比赛,从高一、高二两个年级各抽取10名志愿者参赛。在规定时间内,他们检索到的图书册数的茎叶图如图所示,规定册数不小于20的为优秀.
(Ⅰ) 从两个年级的参赛志愿者中各抽取两人,求抽取的4人中至少一人优秀的概率;
(Ⅱ) 从高一10名志愿者中抽取一人,高二10名志愿者中抽取两人,3人中优秀人数记为,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,把函数的图象向右平移个单位,再把图象上各点的横坐标缩小到原来的一半,纵坐标不变,得到函数的图象,当时,方程恰有两个不同的实根,则实数的取值范围为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知圆柱的底面圆的半径,圆柱的表面积为;点在底面圆上,且直线与下底面所成的角的大小为,
(1)求点到平面的距离;
(2)求二面角的大小(结果用反三角函数值表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥中,底面是且边长为的菱形,侧面为正三角形,其所在平面垂直于底面,若为的中点,为的中点.
(1)求证:平面;
(2)求证:;
(3)在棱上是否存在一点,使平面平面,若存在,确定点的位置;若不存在,说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列关于概率和统计的几种说法:①10名工人某天生产同一种零件,生产的件数分别是15,17,14,10,15,17,17,16,14,12,设其平均数为,中位数为,众数为,则,,的大小关系为;②样本4,2,1,0,-2的标准差是2;③在面积为的内任选一点,则随机事件“的面积小于”的概率为;④从写有0,1,2,…,9的十张卡片中,有放回地每次抽一张,连抽两次,则两张卡片上的数字各不相同的概率是.其中正确说法的序号有______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com