精英家教网 > 高中数学 > 题目详情

【题目】某日,甲乙二人随机选择早上6:00﹣7:00的某一时刻到达黔灵山公园早锻炼,则甲比乙提前到达超过20分钟的概率为(  )
A.
B.
C.
D.

【答案】D
【解析】解:设甲到校的时间为x,乙到校的时间为y.
(x,y)可以看成平面中的点试验的全部结果所构成的区域为Ω={(x,y|0≤x≤60,0≤y≤60}是一个矩形区域,对应的面积S=60×60=3600,
则甲比乙提前到达超过20分钟事件A={x|y﹣x≥20},对应的面积×40×40=800,
几何概率模型可知甲比乙提前到达超过20分钟的概率为=
故选:D.
【考点精析】解答此题的关键在于理解几何概型的相关知识,掌握几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体ABCD﹣A1B1C1D1的棱长为1,以顶点A为球心, 为半径作一个球,则球面与正方体的表面相交所得到的曲线的长等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若方程f(x)=a有四个不同的解x1 , x2 , x3 , x4 , 且x1<x2<x3<x4 , 则x3(x1+x2)+ 的取值范围是( )
A.(﹣1,+∞)
B.(﹣1,1]
C.(﹣∞,1)
D.[﹣1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设圆弧x2+y2=1(x≥0,y≥0)与两坐标轴正半轴围成的扇形区域为M,过圆弧上中点A做该圆的切线与两坐标轴正半轴围成的三角形区域为N.现随机在区域N内投一点B,若设点B落在区域M内的概率为P,则P的值为(  )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集为R,集合A={x|y=lgx+ },B={x| <2xa≤8}.
(1)当a=0时,求(RA)∩B;
(2)若A∪B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】建造一个容积为240m3 , 深为5m的长方体无盖蓄水池,池壁的造价为180元/m2 , 池底的造价为350元/m2 , 如何设计水池的长与宽,才能使水池的总造价为42000元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2﹣2ax+2+b,(a≠0),若f(x)在区间[2,3]上有最大值5,最小值2.
(1)求a,b的值;
(2)若b<1,g(x)=f(x)﹣mx在[2,4]上为单调函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=x2﹣2ax+1,a∈R;
(1)若函数f(x)在区间(﹣1,2)上是单调函数,求实数a的取值范围;
(2)若不等式f(x)>0对任x∈R上恒成立,求实数a的取值范围;
(3)若函数f(x)在区间[1,+∞)的最小值为﹣2,求实数a的值.

查看答案和解析>>

同步练习册答案